Определение производной

Определение:

Пусть функция $latex f$ определена в некоторой окрестности точки $latex x_0$ и пусть существует конечный предел отношения
$latex \lim\limits_{\Delta x\to 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}<\infty$
Тогда этот предел называют производной функции $latex f$ в точке $latex x_0$ и обозначают:
$latex f'(x_0)$ или $latex y'(x_0)$ или $latex \frac{\mathrm{d}y}{\mathrm{d}x}_{x\to x_0}$ или $latex \frac{\mathrm{d}f}{\mathrm{d}x}_{x\to x_0}$.
$latex f'(x_0)= \lim\limits_{\Delta x\to 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}=\lim\limits_{\Delta x \to 0}\frac{\Delta y}{\Delta x}$
$latex \Delta y=f(x_0+\Delta x)-f(x_0)$ называется приращением функции в точке $latex x_0$
$latex \Delta x=x-x_0$ называется приращением аргумента в точке $latex x_0$.

Примеры:

  1. $latex y=C => \Delta y=C-C=0 => \lim\limits_{\Delta x \to 0}\frac{\Delta y}{\Delta x}=0 => C’=0;$
  2. $latex y=\sin x => \Delta y= \sin (x+\Delta x)-\sin x=2\sin\frac{\Delta x}{2}\cos\frac{2x+\Delta x}{2}$$latex =>\lim\limits_{\Delta x \to 0}\frac{\Delta y}{\Delta x}=\lim\limits_{\Delta x \to 0}\frac{2\sin\frac{\Delta x}{2}\cos(x+\frac{\Delta x}{2})}{\Delta x}=[\lim\limits_{\Delta x\to 0}\frac{2\sin\frac{\Delta x}{2}}{\Delta x}=1; \sin x \sim x, x \to 0]=\cos\underset{\Delta x \to 0}{(x+\frac{\Delta x}{2})}=\cos x => (\sin x)’=\cos x;$
  3. $latex y=\cos x => \Delta y =\cos (x+ \Delta x)-\cos x= -2\sin\frac{\Delta x}{2}\sin(x+\frac{\Delta x}{2})$ $latex => \lim\limits_{\Delta x\to 0}\frac{-2\sin\frac{\Delta x}{2}\sin(x+\frac{\Delta x}{2})}{\Delta x}=-\sin x => (\cos x)’ = -\sin x;$
  4. $latex y=a^x => \Delta y=a^{x+\Delta x}-a^x =>$$latex \lim\limits_{\Delta x \to 0}\frac{a^{x+\Delta x}-a^x}{\Delta x}=\lim\limits_{\Delta x \to 0}\frac{a^x(a^{\Delta x}-1)}{\Delta x}=[a^x-1\sim x, x\to 0]=\lim\limits_{\Delta x\to 0}\frac{a^x(\Delta x\mathrm{ln}a)}{\Delta x}=a^x\mathrm{ln}a => (a^x)’=a^x\mathrm{ln}a;
    (e^x)’=e^x;$
  5. $latex y=\log_a x=> \Delta y=\log_a (x+\Delta x) — \log_a x => $$latex \lim\limits_{\Delta x \to 0} \frac{\log_a (x+\Delta x)-\log_a x}{\Delta x}=\lim\limits_{\Delta x \to 0}\frac{\log_a (\frac{x+\Delta x}{x})}{\Delta x}=\lim\limits_{\Delta x \to 0}\frac{\log_a (1+\frac{\Delta x}{x})}{\Delta x}=[\log_a x \sim \frac{x}{\ln a}, x \to 0]=\lim\limits_{\Delta x \to 0}\frac{\frac{\Delta x}{x\ln a}}{\Delta x}=\frac{1}{x\ln a} => (\log_a x)’=\frac{1}{x\ln a};
    (\ln x)’=\frac{1}{x};$
  6. $latex y=x^\alpha => \Delta y = (x+\Delta x)^\alpha-x^\alpha => \lim\limits_{\Delta x \to 0}\frac{(x+\Delta x)^\alpha-x^\alpha}{\Delta x}$ = $latex \lim\limits_{\Delta x \to 0}\frac{x^\alpha(1+\frac{\Delta x}{x})^\alpha-x^\alpha}{\Delta x}$=$latex x^\alpha \lim\limits_{\Delta x \to 0} \frac{(1+\frac{\Delta x}{x})^\alpha-1}{\frac{\Delta x}{x}\cdot x}$=$latex [(1+x)^\alpha-1\sim \alpha x, x\to 0; (1+\frac{\Delta x}{x})^\alpha-1\sim\alpha\frac{\Delta x}{x}]$=$latex x^\alpha\cdot\alpha\cdot\frac{1}{x}=\alpha x^{\alpha-1} => (x^\alpha)’=\alpha x^{\alpha -1}$

Практические примеры:

$latex (5)’=0;$
$latex (2^x)’=2^x\ln 2;$
$latex (\log_3 x)’=\frac{1}{x \ln 3};$
$latex (x^5)’=5x^4;$

Определение производной

Тест по теме «Определение производной» и на понимание примеров к ней.

Источники:

  1. Лысенко З.М. Конспект лекций по курсу математического анализа. (тема «Дифференциальное вычисление функций с одной переменной»).

Рекомендуемая к прочтению литература:

Теорема Коши (обобщенная формула конечных приращений)

Формулировка

Если функции [latex]f\left( x \right)[/latex] и [latex]g\left(x\right)[/latex] непрерывны на отрезке [latex][a,b][/latex], дифференцируемы на интервале (a,b), причем [latex]g'(x)\neq 0[/latex] во всех точках этого интервала, то найдется хотя бы одна точка [latex]\xi \in (a,b)[/latex] такая, что [latex]\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)}[/latex].

Доказательство

Рассмотрим функцию [latex]\varphi(x)=f(x)+\lambda g(x)[/latex], где число [latex]\lambda[/latex] выберем таким, чтобы выполнялось равенство [latex]\varphi (a)=\varphi (b)[/latex], которое равносильно следующему:
[latex]f(b)-f(a)+\lambda (g(b)-g(a))=0[/latex].

Заметим, что [latex]g(b)\neq g(a)[/latex], так как в противном случае согласно Теореме Ролля существовала бы точка [latex]c\in (a,b)[/latex] такая, что $latex g'(c)=0$ вопреки условиям данной теоремы. Из равенства [latex]f(b)-f(a)+\lambda (g(b)-g(a))=0[/latex] следует, что [latex]\lambda =-\frac{f(b)-f(a)}{g(b)-g(a)}[/latex].

Так как функция [latex]\varphi [/latex] при любом [latex]\lambda[/latex] непрерывна на отрезке $latex [a,b]$ и дифференцируема на интервале [latex](a,b)[/latex], а при значении [latex]\lambda[/latex], определяемом предыдущей формулой, принимает равные значения в точках $latex a$ и $latex b$, то по теореме Ролля существует точка [latex]\xi \in (a,b)[/latex] такая, что [latex]\varphi ‘(\xi )=0[/latex], т.е. [latex]f'(\xi )+\lambda g'(\xi )=0[/latex], откуда [latex]\frac{f'(\xi )}{g'(\xi )}=-\lambda[/latex]. Из этого равенства и формулы [latex]\lambda =-\frac{f(b)-f(a)}{g(b)-g(a)}[/latex] следует [latex]\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)}[/latex].

  1. Замечание. Теорема Лагранжа — частный случай теоремы Коши [latex](g(x)=x)[/latex].
  2. Замечание. Теорему Коши нельзя получить используя теорему Лагранжа отдельно к числителю и к знаменателю.

Теорема Коши (обобщенная формула конечных приращений)

Правильно ли вы поняли обобщенную теорему Лагранжа?

Литература

  • Конспект лекций Лысенко З.М.
  • Тер-Крикоров А.М., Шабунин М.И., Курс математического анализа, физмат-лит, 2001. стр.157-158

Правило Лопиталя о раскрытии неоднозначностей

Метод нахождения пределов функций, раскрывающий неопределённости вида $latex \frac{0}{0} $ или $latex \frac{\infty}{\infty} $ Правило позволяет заменить предел отношения функций пределом отношения их производных.

1. Докажем теорему для случая, когда пределы функций равны нулю.

Условия:

  1. $latex f(x) &s=1$ и $latex g(x) &s=1$ дифференцируемы в проколотой окрестности точки $latex a $
  2. $latex \lim\limits_{x\to a}f(x)=\lim\limits_{x\to a}g(x)=0 &s=1$
  3.  $latex g'(x) \neq 0 &s=1$ в проколотой окрестности точки $latex a $
  4. Существует  $latex \lim\limits_{x\to a}\frac{f'(x)}{g'(x)} &s=1$

Вывод: Тогда существует  $latex \lim\limits_{x \rightarrow a} \frac{f(x)}{g(x)} = \lim\limits_{x \rightarrow a} \frac{f'(x)}{g'(x)} &s=1$

Доказательство: Доопределим функции в точке $latex a $ нулём. Из 1 условия следует, что $latex f(x) $ и  $latex g(x) $ непрерывны на отрезке $latex [a,x] $, где $latex x $ принадлежит рассматриваемой окрестности точки $latex a $. Применим обобщённую формулу конечных приращений (Коши) к $latex f(x) $ и  $latex g(x) $ на отрезке $latex [a,x] $ $latex \exists \xi\in [a,x]:\frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f'(\xi)}{g'(\xi)}&s=1 $ Так как $latex f(a)=g(a)=0 $  получим, что $latex \forall x $ $latex \exists \xi \in [a,x]:\frac{f(x)}{g(x)}=\frac{f'(\xi)}{g'(\xi)} &s=1$ Пусть предел отношения производных равен $latex A $. Следовательно: $latex \lim\limits_{x \to a} \frac{f'(\xi(x))}{g'(\xi(x))}=\lim\limits_{y \to a} \frac{f'(y)}{g'(y)}=A &s=1$, так как $latex \lim\limits_{x \to a} \xi(x)=a &s=1$

2. Докажем теорему для случая, когда пределы функций равны бесконечности.

Условия:

  1. $latex f(x) $ и $latex g(x) $ дифференцируемы при $latex x>a $
  2. $latex \lim\limits_{x\to\infty}f(x)=\lim\limits_{x\to\infty}g(x)=\infty &s=1$
  3. $latex g'(x)\neq 0 $ при $latex x>a $
  4. Существует конечный $latex \lim\limits_{x\to\infty}\frac{f'(x)}{g'(x)}=A &s=1$

Вывод: Тогда существует $latex \lim\limits_{x\to\infty}\frac{f(x)}{g(x)}=\lim\limits_{x\to\infty}\frac{f'(x)}{g'(x)} &s=1$ Доказательство: Из условия 2 следует, что $latex \exists a_{1}>a:\forall x>a_{1} \to |f(x)|>1,|g(x)|>1 $, и поэтому $latex f(x)\neq 0,g(x)\neq0 $ при $latex x>a_{1} $. По определению предела (условие 4) для заданного числа $latex \varepsilon >0 $ можно найти $latex \delta_{1}=\delta_{1}(\varepsilon)\geq a_{1} $ такое, что для всех $latex t>\delta_{1} $ выполняется неравенство: $latex A-\frac{\varepsilon}{2}<\frac{f'(t)}{g'(t)}<A+\frac{\varepsilon}{2} &s=1$ Фиксируя $latex x_{0}>\delta_{1} $ выберем, пользуясь условием 2 число $latex \delta_{2}>x_{0} $

Расположение всех выбираемых нами точек на прямой

такое, чтобы при всех $latex x>\delta_{2} $ выполнялись неравенства: $latex \left |\frac{f(x_{0})}{f(x)}<\frac{1}{2}\right | &s=1$  и  $latex \left |\frac{g(x_{0})}{g(x)}<\frac{1}{2}\right | &s=1$ Для доказательства теоремы нужно доказать, что существует такое $latex \delta $, что при всех $latex x>\delta $ выполняется неравенство: $latex A-\varepsilon<\frac{f(x)}{g(x)}<A+\varepsilon (*) &s=1$ Число $latex \delta $ будет выбрано ниже. Считая, что $latex x>\delta $, применим к функциям $latex f $ и $latex g $ на отрезке $latex [x;x_{0}] $  обобщённую формулу конечных приращений (Коши). $latex \exists \xi \in [x_{0};x]: \frac{f(x)-f(x_{0})}{g(x)-g(x_{0})}=\frac{f'(\xi)}{g'(\xi)} &s=1$ Преобразуем левую часть неравенства: $latex \frac{f(x)-f(x_{0})}{g(x)-g(x_{0})}=\frac{f(x)}{g(x)}(\varphi(x))^{-1} &s=1$, где $latex \varphi(x)=\frac{1-\frac{g(x_{0})}{g(x)}}{1-\frac{f(x_{0})}{f(x)}}=1+\beta(x) &s=1$ Заметим, что $latex \beta(x)\to0 $ при $latex x\to+\infty $ в силу условия 2, поэтому $latex \forall \varepsilon>0 \exists \delta\geq\delta_{2}: $ $latex \forall x>\delta\to|\beta(x)|<\frac{\frac{\varepsilon}{2}}{|A|+ \frac{\varepsilon}{2}}(**) &s=1$ Так как  $latex \xi>x_{0}>\delta_{1} $, то для всех $latex x>\delta_{2} $  выполняется неравенство: $latex A-\frac{\varepsilon}{2}<\frac{f(x)}{g(x)} (\varphi(x))^{-1}<A+\frac{\varepsilon}{2} &s=1$ Если $latex x>\delta $, то $latex \varphi(x)>0 $, и поэтому неравенство равносильно следующему: $latex (A-\frac{\varepsilon}{2})(1+\beta(x))< $ $latex \frac{f(x)}{g(x)}<(A+\frac{\varepsilon}{2})(1+\beta(x)) &s=1$ Используя неравенство $latex (**) $, получаем: $latex (A-\frac{\varepsilon}{2})(1+\beta(x))=$ $latex A-\frac{\varepsilon}{2}+(A-\frac{\varepsilon}{2})\beta(x) \geq $ $latex (A-\frac{\varepsilon}{2})-&s=1-(|A|+\frac{\varepsilon}{2})|\beta(x)|> $ $latex A-\frac{\varepsilon}{2}-\frac{\varepsilon}{2}=A-\varepsilon &s=1$ Аналогично находим: $latex (A+\frac{\varepsilon}{2})(1+\beta(x))\leq $ $latex A+\frac{\varepsilon}{2}+(|A|+\frac{\varepsilon}{2})|\beta(x)|< A+\varepsilon &s=1$

Таким образом для всех $latex x>\delta $ выполняется  неравенство $latex (*) $, а это означает, что справедливо утверждение: $latex \lim\limits_{x\to\infty}\frac{f(x)}{g(x)}=\lim\limits_{x\to\infty}\frac{f'(x)}{g'(x)} &s=1$

Примеры:

Пример 1. Найти $latex \lim\limits_{x \to 1}\frac{3x^{10}-2x^{5}-1}{x^{3}-4x^{2}+3} &s=1$ Обозначим $latex f(x)=3x^{10}-2x^{5}-1 $ , $latex g(x)=x^{3}-4x^{2}+3 $. Так как  $latex \lim\limits_{x\to1}f(x)=\lim\limits_{x\to1}g(x)=0 $, воспользуемся правилом Лопиталя для ситуации $latex \frac{0}{0} $. $latex f'(x)=30x^{9}-10x^{4} $, $latex f'(1)=20 $ $latex g'(x)=3x^{2}-8x $, $latex g'(1)=-5 $ По доказанной теореме: $latex \lim\limits_{x\to1}\frac{f(x)}{g(x)}=\lim\limits_{x\to1}\frac{f'(x)}{g(x’)}=\frac{20}{-5}=-4 &s=1$

Ответ: -4.

Пример 2. Доказать, что [latex] \lim\limits_{x\to\infty}\frac{\ln x}{x^{\alpha}}=0,\alpha>0 [/latex]

Применяя правило Лопиталя для ситуации $latex \frac{\infty}{\infty} $, получим: [latex]\lim\limits_{x\to\infty}\frac{\ln x}{x^{\alpha}}=[/latex][latex]\lim\limits_{x\to\infty}\frac{\frac{1}{x}}{\alpha x^{\alpha-1}}=[/latex][latex] \lim\limits_{x\to\infty}\frac{1}{\alpha x^{\alpha}}=0[/latex]

Доказано.

Источники:

  1. Конспект по курсу математического анализа Лысенко З.М.
  2. Тер-Крикоровв А.М., Шабунин М.И. Курс математического анализа -М.:ФИЗМАТ-ЛИТ, 2001.-672 с. гл. IV §19 с. 172-175

Тест на знание правила Лопиталя

Пройдите короткий тест для закрепления материала.

Задачи, которые приводят к понятию производной

  1. Задача о скорости

    Пусть точка движется по прямой. $latex S=S(t)$ — путь пройденый точкой за время $latex t$ от начала движения. Путь пройденный точкой за время от $latex t$ до $latex t+\Delta t =$ $latex S(t+\Delta t) — S(t)$ .
    graph2
    Средняя скорость: $latex V_{cp}=\frac{S(t+\Delta t)-S(t)}{\Delta t}$
    Если движение точки — равномерное, то $latex V_{cp}$ — постоянная.
    Если же движение неравномерное, то $latex V_{cp}$ не меняется при изменении $latex \Delta t$ .
    Определение:
    Мгновенной скоростью называют скорость точки в момент $latex t$: $latex V(t)=\lim\limits_{\Delta t\to 0} V_{cp}=\lim\limits_{\Delta t\to 0} \frac{S(t+\Delta t)-S(t)}{\Delta t}$ .

  2. Задача о касательной

    Пусть функция $latex f$ определена в $latex \delta$-окрестности точки $latex x_0$ и непрерывна в этой окрестности.
    test6
    Возьмем две точки на графике: $latex M_0 (x_0;y_0)$ и $latex M(x_0+\Delta x;f(x_0+\Delta x))$ .
    Уравнение прямой, проходящей через точки $latex M$ и $latex M_0$ имеет вид $latex y-y_0=\frac{\Delta y}{\Delta x}(x-x_0)$, где $latex \Delta y=f(x_0+\Delta x)-f(x_0)$, $latex \Delta x=x-x_0$.
    $latex \frac{\Delta y}{\Delta x}= \tan \alpha$
    Эту прямую называют секущей, а число $latex k=\tan \alpha$ — угловым коэффициентом секущей.
    $latex \Delta x \to 0 => \Delta y \to 0 => MM_0 = \sqrt{(\Delta x)^2+(\Delta y)^2} \to 0$
    Определение:
    Касательной кривой заданной уравнением $latex y=f(x)$ в точке $latex x_0$ называют предельное положение секущей при $latex \Delta x \to 0$.
    Если существует $latex \lim\limits_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = k_0$, то существует предельное положение секущей.
    Таким образом, если существует $latex \lim\limits_{\Delta x \to 0}\frac{\Delta y}{\Delta x}$, то прямая, проходящая через точку $latex M_0$ с угловым коэффициентом $latex k_0$ называется касательной к графику функции $latex y=f(x)$ в точке $latex x_0$ .

В обеих задачах речь идет о пределе отношения приращения функции к приращению аргумента.

Задачи, которые приводят к понятию производной

Тест по теме «Задачи, которые приводят к понятию производной»

Источники:

  1. Лысенко З.М. Конспект лекций по курсу математического анализа. (тема «Дифференциальное вычисление функций с одной переменной»).

Рекомендуемая к прочтению литература