Задача из журнала «Квант» (2000 год, 3 выпуск) М1707*

Условие

Квадрат клетчатой бумаги, состоящий из $n\times n$ клеток, разрезан на $2n$ прямоугольников. При этом каждый прямоугольник расположен либо целиком ниже, либо выше ступенчатой ломаной, разделяющей квадрат (рис.1). Докажите, что найдется клетка клетчатой бумаги, являющаяся одним из названных прямоугольников.

Рис. 1

Решение

Ступенчатая ломанная разрезает квадрат на два ступенчатых треугольника $T_1$ и $T_2$, при этом основание $T_1$ состоит из $n$ клеток, а основание $T_2$ – из $n – 1$ клетки. В силу условия задачи, один из них разрезан на $m$, а другой – на $k$ прямоугольников, причем $m + k = 2n$. Пока что фиксируем внимание на отдельно взятом ступенчатом треугольнике $T$, в основании которого $s$ клеток (рис.2). Так как при разрезании $T$ на прямоугольники любые две точки из набора $A_1, A_2, \ldots, A_s$ должны принадлежать разным прямоугольникам, можно заключить, что $T$ нельзя разрезать на менее чем $s$ прямоугольников.

Рис. 2

Разберем далее тот случай, когда $T$ разрезан в точности на s прямоугольников; тогда каждая из точек $A_1, A_2 , \ldots, A_s$ принадлежит только одному из них и, более того, каждая из $s$ закрашенных клеток принадлежит целиком только одному из $s$ прямоугольников. Не закрашенных клеток, примыкающих по сторонам к закрашенным, на единицу меньше, чем закрашенных, поэтому хотя бы один из $s$ прямоугольников не выйдет за пределы своей заштрихованной клетки, т.е. будет с ней совпадать. Возвращаясь к ступенчатым треугольникам $T_1$ и $T_2$, можно сказать, что $m \geq n$, а $k \geq n-1$. Но так как $m + k = 2n$, то либо $m = n$, либо $k = n – 1$. Значит, либо в $T_1$, либо в $T_2$ найдется прямоугольник, совпадающий с клеткой клетчатой бумаги.

В.Произволов

Сведение кратных интегралов к повторным

Сведение двойного интеграла к повторному

Теорема 1

Пусть:

  1. функция $f(x,y)$ интегрируема в некотором прямоугольнике $\Pi = \{ (x,y): a \leq x \leq b, c \leq y \leq d \};$
  2. для любых $x \in [a,b]$ существует интеграл $\int\limits_c^d f(x,y)\,dy.$

Тогда $\int\limits_c^d f(x,y)\,dy$ — интегрируемая на отрезке $[a,b]$ функция от аргумента $x,$ и справедлива следующая формула:
$$\iint\limits_{\Pi} f(x,y)\,dx\,dy = \int\limits_a^b dx \int\limits_c^d f(x,y)\,dy.$$

Доказательство

... показать

Следствие 1

Пусть:

  1. существует двойной интеграл $\iint\limits_{\Pi} f(x,y)\,dx\,dy;$
  2. для любых $x \in [a,b]$ существует интеграл $\int\limits_c^d f(x,y) \, dy;$
  3. для любых $y \in [c,d]$ существует интеграл $\int\limits_a^b f(x,y) \, dx.$

Тогда справедлива формула

$\iint\limits_{\Pi} f(x,y)\,dx\,dy = \int\limits_a^b dx \int\limits_c^d f(x,y)\,dy =$ $\int\limits_c^d dy \int\limits_a^b f(x,y)\,dx. \; (3)$

Следствие 2

Непрерывность функции $f(x,y)$ в прямоугольнике $\Pi$ влечет выполнимость условий следствия 1, а значит, справедлива формула $(3).$

Если функция $\psi (x)$ интегрируема на отрезке $[a,b],$ то формула $(3)$ остается справедливой при замене функции $f(x,y)$ на $\psi (x) f(x,y).$

Определение 1

Пусть:

  1. $\phi (x)$ и $\psi (x)$ — функции, непрерывные на отрезке $[a,b];$
  2. для любых $x \in (a,b)$ выполняется неравенство $\phi (x) < \psi (x).$

Тогда область (рисунок 1)
$$\Omega = \{(x,y): \phi (x) < y < \psi (x), a < x < b\}$$
будем называть элементарной относительно оси $y.$
Fig_1
Поскольку граница области $\delta \Omega$ состоит из графиков непрерывных функций, то $\Omega$— измеримая по Жордану область.

Теорема 2

Пусть:

  1. $\Omega$ — элементарная область относительно оси $y;$
  2. функция $f(x,y)$ интегрируема на области $\overline{\Omega} = \Omega \cup \delta \Omega;$
  3. для любых $x \in [a,b]$ существует интеграл $\int\limits_{\phi(x)}^{\psi(x)} f(x,y)\,dy.$

Тогда справедлива следующая формула:
$$\iint\limits_{\Omega} f(x,y)\,dx\,dy = \int\limits_a^b dx \int\limits_{\phi(x)}^{\psi(x)} f(x,y)\,dy. \;(4)$$

Доказательство

... показать

Пример 1

Вычислить двойной интеграл $\iint\limits_G x^2 \, dx\,dy$ по области $G = \{(x,y): -1 < x < 1, x^2 < y < 2 \}$ (рисунок 3).
Fig_3

Решение

... показать

Пример 2

Свести к повторному интеграл $\iint\limits_G f(x,y) \, dx \, dy,$ где $G$ — область, ограниченная окружностями $x^2 + y^2 = 4$ и $x^2 -2x + y^2 = 0$ (рисунок 4).
Fig_4

Решение

... показать

Сведение тройного интеграла к повторному

Определение 2

Область $\Omega \in \mathbb{R}^3$ будем называть элементарной относительно оси $z,$ если
$$\Omega = \{(x,y,z): (x,y) \in G \subset \mathbb{R}^2, \phi(x,y) < z < \psi(x,y) \},$$
где $G$ — ограниченная в $\mathbb{R}^2$ область, а функции $\phi(x,y)$ и $\psi(x,y)$ непрерывны на $\overline{G},$ где $\overline{G}$ — замыкание области $G.$

Теорема 3

Если функция $f(x,y,z)$ непрерывна на $\overline{\Omega} = \Omega \cup \delta \Omega,$ где область $\Omega$ элементарна относительно оси $z,$ то справедлива следующая формула:
$$\iiint\limits_\Omega f(x,y,z) \, dx \, dy \, dz = \iint\limits_G dx \,dy \int\limits_{\phi(x,y)}^{\psi(x,y)} f(x,y,z) \, dz. \; (6)$$

Доказательство

... показать

Пример 3

Вычислить тройной интеграл $\iiint\limits_G z \, dx \, dy \, dz,$ где $G$ — область, ограниченная плоскостями $x + y + z = 1,$ $x = 0,$ $y = 0$ и $z = 0$ (рисунок 5).
Fig_5

Решение

... показать

Тест

Проверьте свои знания по теме, пройдя этот небольшой тест.

M1489

Для каких прямоугольников m\times n на клетчатой бумаге, в клетках которых расставлены нули и единицы, можно получить из любой расстановки любую другую, если разрешается изменять числа одновременно в каждой строке, каждом столбце и на каждой прямой, параллельной диагоналями клеток (в частности, в угловых клетках)?

Решение: это всегда возможно для прямоугольников m\times n , лишь если m и n не больше 3. поскольку операцию можно выполнять в обратном порядке, достаточно выяснить, для каких таблиц m\times n из любой расстановки можно получить таблицу из одних едениц.
Легко видеть, что для прямоугольников 1\times n , 2\times n и 3\times n заменами знаков можно получить таблицу из одних единиц: на рисунке 1 указан порядок, в котором нули, стоящие в некоторых клетках, можно заменить на единицы(цветные линии показывают какой именно — вертикальный или диагональный — «ход» следует делать).
С другой сторны, в прямоугольнике m\times n , где m и n не меньше 4, можно выделить фигуру из восьми клеток, показанных на рисунке 2 штриховкой; четность количества единиц не меняется в этих клетках при всех разрешенных преобразованиях — является, как говорят, инвариантом. Таким образом, если в одной из таких фигур стоит нечетное число единиц, то прийти к таблице заполненной единицами, невозможно.
Представляем читателям выяснить, образуют ли такие таблицы из 8 клеток полную систему инвариантов, также следует ли из четности количества единиц в каждой из них возможность преобразовать таблицу в состояние «все единицы», а заодно выяснить, сколько существует классов (неэквивалентных друг другу) таблиц относительно разрешенных в условии преобразований.
А.Галочкин

M1489