Равномерная сходимость и интегрирование

Пусть f_{n} — последовательность интегрируемых на отрезке \left[a;b\right] функций, поточечно сходящаяся к функции f. Поставим вопрос об интегрируемости на отрезке \left[a;b\right] предельной функции f и справедливости равенства
$$ \lim_{n\rightarrow \infty }\int\limits_{a}^{b}f_{n}(x)dx=\int\limits_{a}^{b}f(x)dx $$
Следующие примеры показывают, что в общем случае и интегрируемости нет, и равенство не выполняется.

Пример 1

Пусть \left \{ r_{n} \right \}_{n=1}^{\infty } — последовательность всех рациональных точек из отрезка \left[0;1\right]. Выразим:
$$f_{n}(x)=\left\{\begin{matrix}1,&x\in \left \{ r_{1},\cdots ,r_{n} \right \},\\ 0,& x\in \left[0;1\right]\setminus \left \{ r_{1},\cdots ,r_{n} \right \}\end{matrix}\right.$$
Тогда каждая функция f_{n} интегрируема на отрезке \left[0;1\right], потому что она имеет лишь конечное число точек разрыва \left \{ r_{1},\cdots r_{n}\right \}. С другой стороны, видно, что $$\lim_{n\rightarrow \infty }f_{n}(x)=D(x)$$ где D — функция Дирихле. Но как известно, функция Дирихле не интегрируема на отрезке \left[0;1\right].
Вывод: мы построили последовательность интегрируемых функций, сходящуюся к неинтегрируемой функции.

Замечание (для рядов)

... показать

Пример 2

Положим f_{n}(0)=f_{n}(\frac{1}{n})=f_{n}(1)=0, f_{n}(\frac{1}{2n})=n, а на отрезках \left[0;\frac{1}{2n}\right], \left[\frac{1}{2n};\frac{1}{n}\right], \left[\frac{1}{n};1\right] функция f_{n} — линейна. Мы видим, что \lim_{n\rightarrow \infty }f_{n}(x)=0,\; \forall x\in \left[0;1\right], так что предельная функция f(x)\equiv 0\; (x\in \left[0;1\right]) интегрируема и \int_{0}^{1}f(x)dx=0. С другой стороны, очевидно, что \int_{0}^{1}f_{n}(x)dx=\frac{1}{2}, поэтому предельный переход под знаком интеграла недопустим.
Вывод: даже если предельная функция интегрируема, то предел интегралов не обязан равняться интегралу от предельной функции.

Замечание (для рядов)

... показать

Вывод (для рядов)

Воспользовавшись этими примерами мы показали, что нельзя почленно интегрировать сходящийся ряд, т.е. равенство $$\int\limits_{a}^{b}\sum_{n=1}^{\infty }u_{n}(x)dx=\sum_{n=1}^{\infty }\int\limits_{a}^{b}u_{n}(x)dx$$
не верно. Потому что сумма поточечно сходящегося ряда из интегрируемых функций может оказаться неинтегрируемой функцией, а если даже сумма ряда будет функцией интегрируемой, то нужное равенство все равно нельзя гарантировать.

Теорема (об интегрировании равномерно сходящейся последовательности)

Пусть последовательность  \left \{ f_{n}(x) \right \} из непрерывных на отрезке \left[a;b\right ] функций, равномерно сходится к f(x) на этом отрезке. Тогда существует $$ \lim_{n\rightarrow \infty }\int\limits_{a}^{b}f_{n}(x)dx=\int\limits_{a}^{b}f(x)dx $$

Доказательство

... показать

Следствие (об интегрировании равномерно сходящегося ряда)

Пусть \left \{ u_{n} \right \} — последовательность непрерывных на отрезке \left[a;b\right] функций такова, что ряд \sum_{n=1}^{\infty }u_{n}(x) сходится равномерно на \left[a;b\right]. Тогда справедливо равенство $$\int\limits_{a}^{b}\sum_{n=1}^{\infty }u_{n}(x)dx=\sum_{n=1}^{\infty }\int\limits_{a}^{b}u_{n}(x)dx$$

Доказательство

... показать
Следующая теорема является обобщением всех теорем об интегрировании равномерно сходящейся последовательности.

Теорема

Пусть \left\{f_{n}\right\} — последовательность интегрируемых на отрезке \left[a;b\right] функций, равномерно сходящаяся на этом отрезке к функции f. Тогда предельная функция f интегрируема на \left[a;b\right] и справедливо равенство $$\lim_{n\rightarrow \infty }\int\limits_{a}^{b}f_{n}(x)dx=\int\limits_{a}^{b}f(x)dx$$

Доказательство

... показать

Тесты

равномерная сходимость и интегрирование

Проверьте свои знания по теме «Равномерная сходимость и интегрирование»

Равномерная сходимость последовательностей и рядов

Функциональные последовательности

Если каждому натуральному числу n ставится в соответствие по некоторому закону функция f_n(x), определенная на множестве E, то говорят, что на множестве E задана функциональная последовательность \left \{f_n (x)\right \}. Множество E называется областью определения последовательности \left \{f_n (x)\right \}.

Если для некоторого x_0 \in E числовая последовательность \left \{f_n (x_0) \right \} сходится, то говорят, что последовательность функций \left \{f_n (x) \right \} сходится в точке x_0. Последовательность функций, сходящуюся в каждой точке x \in E, называют сходящейся на множестве E.

Если \underset {n \to \infty}{\lim} f_n(x) = f(x) для всех x \in E, то говорят, что последовательность \left \{f_n (x) \right \} на множестве E сходится к функции f(x). Эту функцию называют предельной функцией последовательности.

Равномерная сходимость функциональных последовательностей

Пусть задана последовательность функций \left \{ f_n(x) \right \} и предельная функция f(x). Говорят, что последовательность функций равномерно сходится на множестве E к функции f(x) если
$$\forall \varepsilon >0 \quad \exists n_{ \varepsilon }\in \mathbb{N}: \forall n \ge n_\varepsilon \ \forall x \in E \Rightarrow \left|f_n(x)-f(x) \right| < \varepsilon .$$
Последовательность \left \{ f_n(x) \right \} называется равномерно сходящейся на E, если существует функция f(x), к которой она равномерно сходится.

Пример показать

Функциональные ряды

Аналогично вводим понятие функциональных рядов. Пусть каждому натуральному числу n ставится в соответствие по некоторому закону функция u_n(x), определенная на множестве E. Формально говоря нам дана функциональная последовательность \left \{ u_n(x) \right \}.

Выражение вида u_{ 1 }(x)+u_2(x) +\dots +u_n(x) +\dots =\overset{\infty}{\underset{n=1}{\sum}}u_n(x) называется функциональным рядом. Если для некоторого x_0 \in E числовой ряд \sum_{n=1}^{\infty} u_n(x_0) сходится, то говорят, что функциональный ряд \sum_{n=1}^{\infty} u_n(x) сходится в точке x_0. Функциональный ряд, сходящийся в каждой точке x \in E, называют сходящимся на множестве E.

Сумма n первых членов ряда S_n(x) = \overset{n}{\underset{k=1}{\sum}}u_k(x) называется его частичной суммой. Заметим, что частичная сумма сама является функцией. Мы получаем функциональную последовательность \left \{ S_n(x) \right \}.

Пример показать

Равномерная сходимость функциональных рядов

Пусть задан функциональный ряд \overset{\infty}{\underset{n=1}{\sum}}u_n(x), члены которого являются функциями, определенными на множестве E. Функциональный ряд называется равномерно сходящимся на множестве E, если последовательность его частичных сумм равномерно сходящаяся на множестве E. Согласно определению равномерной сходимости последовательности функции, существует такая функция S(x), что
$$\forall \varepsilon >0 \quad \exists n_{ \varepsilon }\in \mathbb{N}: \forall n \ge n_\varepsilon \ \forall x \in E \Rightarrow \left|S_n(x)-S(x) \right| < \varepsilon .$$
Обозначим S_n(x)-S(x)=r_n(x)n-ый остаток ряда, получаем r_n(x) = \overset{\infty}{\underset{k=n+1}{\sum}}u_k(x). Тогда условие сходимости ряда примет вид: $$\forall \varepsilon >0 \quad \exists n_{ \varepsilon }\in \mathbb{N}: \forall n \ge n_\varepsilon \ \forall x \in E \Rightarrow \left|r_n(x)\right| < \varepsilon .$$
Это означает, что какое бы мы маленькое \varepsilon не взяли, начиная с некоторого номера n, n-ый остаток ряда будет меньше этого \varepsilon.

Необходимое условие равномерной сходимости функционального ряда

Теорема

Если функциональный ряд \overset{\infty}{\underset{n=1}{\sum}}u_n(x) равномерно сходится на множестве E, то последовательность его членов \left \{ u_n(x) \right \} равномерно стремится к нулю на множестве E.

Доказательство

Обозначим частичные суммы ряда как S_n(x), а сумму ряда (предельную функцию последовательности частичных сумм) как S(x). Согласно определению равномерной сходимости ряда
$$\forall \varepsilon >0 \quad \exists n_{ \varepsilon }\in \mathbb{N}: \forall n \ge n_\varepsilon \ \forall x \in E \Rightarrow \left|S_n(x)-S(x) \right| < \frac{\varepsilon}{2} ,$$
поэтому для \forall n \ge n_\varepsilon справедливо также неравенство
$$\left| u_{ n+1 }(x) \right| =\left| S_{ n+1 }(x)-S_{ n }(x) \right| =\left| \left[ S_{n+1}(x)-S(x) \right] + \left[S(x) — S_n(x) \right] \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon .$$
А это и означает равномерную сходимость к нулю последовательности \left \{ u_n(x) \right \}.

Список Литературы

Равномерная сходимость последовательностей и рядов

После прочтения статьи, для закрепления материала, рекомендуется пройти тест по данной теме


Таблица лучших: Равномерная сходимость последовательностей и рядов

максимум из 60 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Критерий сходимости рядов с неотрицательными слагаемыми

Теорема

Рассмотрим ряд в котором все члены ряда неотрицательны, т.е. (\forall n \in N \rightarrow a_{n}\geq 0). Для того чтобы ряд сходился, необходимо и достаточно, чтобы последовательность его частичных сумм была ограниченна сверху.

Доказательство

Так как a_{n}\geq 0, то S_{n}=S_{n-1}+a_{n}\geq S_{n-1}. Из этого следует что последовательность частичных сумм монотонно возрастает. Если ряд сходится это означает что сходится последовательность его частичных сумм. По теореме об ограниченности сходящейся последовательности сходимость последовательности частичных сумм эквивалентна ограниченности этой последовательности.

Пример

Рассмотрим ряд:$$\sum_{n=1}^{\infty }\frac{1}{n^{\alpha }},$$ где \alpha>0. При \alpha=1 получаем гармонический ряд, а он как известно расходится.
При 0<\alpha<1 имеем:$$S_{n}(\alpha)=1+ \frac{1}{2^{\alpha}}+\cdots +\frac{1}{n^{\alpha}}\geq n \cdot \frac{1}{n^{\alpha}}=n^{1-\alpha}\underset{n\rightarrow \infty }{\rightarrow}\infty $$ Из этого следует, что S_{n}(\alpha)\rightarrow +\infty , а из этого следует расходимость ряда.
Теперь рассмотрим случай \alpha>1. Выберем такое натуральное m, что n<2^{m}. Тогда имеем:$$S_{n}(\alpha)\leq S_{2^{m}-1}(\alpha)=1+\left ( \frac{1}{2^{\alpha}}+\frac{1}{3^{\alpha}} \right )+\left ( \frac{1}{4^{\alpha}}+\frac{1}{5^{\alpha}}+\frac{1}{6^{\alpha}}+\frac{1}{7^{\alpha}} \right )+$$$$+\cdots +\left ( \frac{1}{(2^{m-1})^{\alpha}}+\frac{1}{(2^{m-1}+1)^{\alpha}}+\cdots +\frac{1}{(2^{m}-1)^{\alpha}} \right )\leq $$$$\leq 1+2^{1-\alpha}+(2^{2})^{1-\alpha}+\cdots +(2^{m-1})^{1-\alpha}=$$$$=1+2^{1-\alpha}+(2^{1-\alpha})^{2}+\cdots +(2^{1-\alpha})^{m-1}=\frac{1-(2^{1-\alpha})^{m}}{1-2^{1-\alpha}}$$ Отсюда следует, что при \alpha>1 имеем S_{n}(\alpha)\leq \frac{1}{1-2^{1-\alpha}}, т.е. последовательность частичных сумм ограниченна сверху, и по теореме о сходимости рядов с неотрицательными членами ряд сходится при \alpha>1.

Список Литературы

Тест на проверку знаний по данной теме.

Таблица лучших: Критерий сходимости рядов с неотрицательными слагаемыми

максимум из 2 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Обобщённый гармонический ряд

Обобщённым гармоническим рядом называют ряд:$$\sum_{n=1}^{\infty }\frac{1}{n^{\alpha}}=1+\frac{1}{2^{\alpha}}+\frac{1}{3^{\alpha}}+\cdots +\frac{1}{n^{\alpha}}+\cdots $$

Сходимость обобщённого гармонического ряда

$$\sum_{n=1}^{\infty }\frac{1}{n^{\alpha }},$$ где \alpha>0. При \alpha=1 получаем гармонический ряд, а он как известно расходится.
При 0<\alpha<1 имеем:$$S_{n}(\alpha)=1+ \frac{1}{2^{\alpha}}+\cdots +\frac{1}{n^{\alpha}}\geq n \cdot \frac{1}{n^{\alpha}}=n^{1-\alpha}\underset{n\rightarrow \infty }{\rightarrow}\infty $$ Из этого следует, что S_{n}(\alpha)\rightarrow +\infty , а из этого следует расходимость ряда.
Теперь рассмотрим случай \alpha>1. Выберем такое натуральное m, что n<2^{m}. Тогда имеем:$$S_{n}(\alpha)\leq S_{2^{m}-1}(\alpha)=1+\left ( \frac{1}{2^{\alpha}}+\frac{1}{3^{\alpha}} \right )+\left ( \frac{1}{4^{\alpha}}+\frac{1}{5^{\alpha}}+\frac{1}{6^{\alpha}}+\frac{1}{7^{\alpha}} \right )+$$$$+\cdots +\left ( \frac{1}{(2^{m-1})^{\alpha}}+\frac{1}{(2^{m-1}+1)^{\alpha}}+\cdots +\frac{1}{(2^{m}-1)^{\alpha}} \right )\leq $$$$\leq 1+2^{1-\alpha}+(2^{2})^{1-\alpha}+\cdots +(2^{m-1})^{1-\alpha}=$$$$=1+2^{1-\alpha}+(2^{1-\alpha})^{2}+\cdots +(2^{1-\alpha})^{m-1}=\frac{1-(2^{1-\alpha})^{m}}{1-2^{1-\alpha}}$$ Отсюда следует, что при \alpha>1 имеем S_{n}(\alpha)\leq \frac{1}{1-2^{1-\alpha}}, т.е. последовательность частичных сумм ограниченна сверху, и по теореме о сходимости рядов с неотрицательными членами ряд сходится при \alpha>1.

Список Литературы

Тест на проверку знаний по данной теме.

Таблица лучших: Обобщённый гармонический ряд

максимум из 2 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Критерий Коши

Теорема

Для того чтобы ряд \sum_{n=1}^{\infty}{a_{n}} сходился, необходимо и достаточно, чтобы для любого \varepsilon >0 существовал такой номер N_{\varepsilon }, что для любого n>N_{\varepsilon } и при любом натуральном p > 0 выполнялось неравенство:$$\left| a_{n+1}+a_{n+2}+…+a_{n+p} \right|<\varepsilon$$.

Доказательство

По определению, сходимость ряда эквивалентна сходимости последовательности его частичных сумм S_{n}. В силу критерия Коши для последовательностей, сходимость последовательности {S_{n}} эквивалентна ее фундаментальности. Фундаментальность последовательности {S_{n}} означает, \forall \varepsilon >0, \exists N_{\varepsilon }: \forall n\geq N_{\varepsilon }, \forall p\in \mathbb{N}\rightarrow \left| S_{n+p}- S_{n} \right|<\varepsilon. При этом:S_{n+p}-S_{n}=a_{1}+\ldots+a_{n}+a_{n+1}+\ldots+a_{n+p}-(a_{1}+\ldots+a_{n})=a_{n+1}+\ldots+a_{n+p}, тем самым теорема доказана.
Пример показать

Список Литературы

Тест на проверку знаний по данной теме.

Таблица лучших: Критерий Коши сходимости ряда

максимум из 3 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных