M1724

Задача из журнала «Квант» (2000 год, 2 выпуск)

Условие задачи

В треугольнике [latex] ABC [/latex] проведены высоты [latex] AD [/latex] и [latex] CE [/latex], пересекающиеся в точке [latex] O [/latex](рис.1). Прямая [latex] DE [/latex] пересекает продолжение стороны [latex] AC [/latex] в точке [latex] K[/latex].

Докажите, что медиана [latex] BM [/latex] треугольника [latex] ABC [/latex] перпендикулярна прямой [latex] OK [/latex].

Решение

Докажем, что прямая [latex] OM [/latex] перпендикулярна на [latex] KB [/latex] (рис.1).
Отсюда непосредственно будет следовать утверждение задачи, поскольку в этом случае [latex] O [/latex] окажется ортоцентром треугольника [latex] KBM [/latex] (рис.2).

Пусть основание перпендикуляра, опущенного из точки [latex] O [/latex] на прямую [latex] BK [/latex], служит точка [latex] N [/latex] (рис.3).

Поскольку точки [latex] E [/latex] и [latex] N [/latex] лежат на окружности с диаметром [latex] OB [/latex], то угол [latex] BND [/latex] равен углу [latex] BED [/latex]. Аналогично, четырехугольник [latex] AEDC [/latex] вписан в окружность с диаметром [latex] AC [/latex].

Поэтому угол [latex] BED [/latex] равен углу [latex] ACB[/latex]. Таким образом, сумма углов [latex] KND [/latex] и [latex] ACB [/latex] равна [latex]180^\circ[/latex], т.е. четырехугольник [latex] KNDC [/latex] вписанный.

Значит, угол [latex] NCK [/latex] равен углу [latex] NDK [/latex]. Но угол [latex] NDE [/latex] равен углу [latex] NBE [/latex] в силу того, что точки[latex] B [/latex],[latex] D [/latex],[latex] E [/latex] и [latex] N [/latex], как мы уже отмечали, лежат на одной окружности с диаметром [latex] OB [/latex]. Поэтому равны углы [latex] NBA [/latex] и [latex] NCA [/latex]. Т.е. точка [latex] N [/latex] лежит на описанной окружности треугольника [latex] ABC [/latex].

Нам осталось совсем немного. Продолжим прямую [latex] NO [/latex] до пересечения с описанной окружностью треугольника [latex] ABC [/latex] в точке [latex] P [/latex] (рис.4).

Так как угол [latex] BNP [/latex] прямой, то [latex] BP [/latex] — диаметр этой окружности. Значит, углы [latex] BAP [/latex] и [latex] BCP [/latex] прямые. Поэтому отрезок [latex] AP [/latex] параллелен [latex] CE [/latex], а [latex] PC [/latex] параллелен [latex] AD [/latex]. Но отсюда [latex] APCO [/latex]- параллелограмм, и прямая [latex] NO [/latex] делит [latex] AC [/latex] пополам, что и требовалось доказать.

М. Волкевич

M447. Задача об остроугольном треугольнике

Задача из журнала «Квант»(1977, №6)

Условие

В остроугольном треугольнике $ABC$ отрезки $BO$ и $CO$ (где $O$ — центр описанной окружности) продолжены до пересечения в точках $D$ и $E$ со сторонами $AC$ и $BC$ треугольника. Оказалось, что $\widehat{BDE}=50^{\circ}$, а $\widehat{CED}=30^{\circ}$. Найдите величины углов треугольника $ABC$ и докажите равенства $\left | AE \right |=\left | ED \right |$, $\left | CE \right |=\left | CB \right |$, $\left | CD \right |=\left | CO \right |$.

Решение

Величина угла $A$ находится легко (см. рис. 1): поскольку $\widehat{BOC}=\widehat{EOD}=180^{\circ}-30^{\circ}-50^{\circ}=100^{\circ}$, величина вписанного угла $A=50^{\circ}$. Заметим также, что $\widehat{OBC}=\widehat{OCB}=40^{\circ}$ (поскольку $\left | BO \right |=\left | CO \right |$).

Рис. 1

Рис. 1

Найти величины других углов треугольника $ABC$ можно с помощью теоремы синусов. Положим $\widehat{EBD}=\varphi $. Тогда $\widehat{OEB}=100^{\circ}-\varphi $, $\widehat{ABC}=\varphi +40^{\circ}$, $\widehat{ACB}=90^{\circ}-\varphi $, $\widehat{OCD}=50^{\circ}-\varphi $, $\widehat{ODC}=\varphi +50^{\circ}$; таким образом, $0^{\circ}< \varphi < 50^{\circ}$. Из треугольников $ODE, OBE$ и $OCD$ находим: $$\frac{\sin 50^{\circ}}{\sin 30^{\circ}}=\frac{\left | OE \right |}{\left | OD \right |}=\frac{\left | OE \right |}{\left | OB \right |}\cdot \frac{\left | OE \right |}{\left | OD \right |}=$$ $$=\frac{\sin \widehat{OBE}}{\sin \widehat{OEB}}\cdot \frac{\sin \widehat{ODC}}{\sin \widehat{OCD}}=\frac{\sin \varphi \sin \left ( \varphi +50^{\circ} \right )}{\sin \left ( 100^{\circ} -\varphi \right )\sin \left ( 50^{\circ}-\varphi \right )} .$$ Уравнение, из которого мы должны найти $\varphi \left ( 0^{\circ} < \varphi < 50^{\circ}\right )$: $$\frac{\sin \varphi \sin \left ( \varphi +50^{\circ} \right )}{\sin \left ( 100^{\circ} -\varphi \right )\sin \left ( 50^{\circ}-\varphi \right )} = 2\sin 50^{\circ},$$ эквивалентно следующим: $$2\sin 50^{\circ}\left ( \cos 50^{\circ} -\cos \left ( 150^{\circ} -2\varphi \right ) \right ) =\cos 50^{\circ}-\cos \left ( 50^{\circ}+2\varphi \right ),$$ $$\sin 20^{\circ}-\sin\left ( 2\varphi -40^{\circ} \right )+2\sin 50^{\circ}\cos \left ( 2\varphi +30^{\circ} \right )=0,$$ $$\cos \left ( \varphi -10^{\circ} \right )\sin \left ( 30^{\circ}-\varphi \right )+\sin 50^{\circ}\sin \left ( 60^{\circ}-2\varphi \right )=0,$$ $$\sin\left ( 30^{\circ} -\varphi \right )\left ( \cos \left ( \varphi -10^{\circ} \right )+2\sin 50^{\circ}\cos \left ( 30^{\circ}-\varphi \right ) \right )=0.$$ Поскольку $\cos \left ( \varphi -10^{\circ} \right )$ и $\cos \left ( \varphi -30^{\circ} \right )$ положительны при $0^{\circ}< \varphi < 50^{\circ}$, последнее уравнение имеет единственный корень $\varphi =30^{\circ}$.

Отсюда $\widehat{ABC}=70^{\circ}$, $\widehat{ACB}=60^{\circ}$/

Далее, $\widehat{BEC}=70^{\circ}\Rightarrow \left | CE \right |=\left | CB \right |;$ $$\widehat{ODC}=80^{\circ}\Rightarrow \left | CD \right |=\left | CO \right |;~\widehat{ADE}=50^{\circ}\Rightarrow \left | EA \right |=\left | ED \right |.$$

Равенства длин, которые требуется установить в задаче, подсказывают, какие углы должен иметь треугольник $ABC$. Но даже зная ответ, придумать данное выше тригонометрическое решение трудно. Вместо этого можно рассуждать иначе.

Рис. 2

Рис. 2

Заметим прежде всего, что условия $\widehat{OED}=30^{\circ}, \widehat{ODE}=50^{\circ}$ определяют ответ однозначно. Действительно (рис. 2), если на окружности с центром $O$ закрепить точки $B$ и $C$ так, что $\widehat{BOC}=100^{\circ}$, и перемещать точку $A$ по дуге ${B}'{C}’$ (симметричной дуге $BC$) от точки ${B}’$ к точке ${C}’$, то точка $D\in \left [ {B}’O \right ]$ будет приближаться к $O$, а $E\in \left [ O{C}’\right ]$ — удаляться от $O$; при этом величина угла $\widehat{ODE}$ будет возрастать, а угла $\widehat{OED}$ — убывать; значит, только при одном положении $A$ эти величины могут принять нужные значения ($50^{\circ}$ и $30^{\circ}$).

Рис. 3

Рис. 3

Теперь нужно лишь доказать, что треугольник с углами $\widehat{A}=50^{\circ}$, $\widehat{B}=70^{\circ}$, $\widehat{C}=60^{\circ}$ удовлетворяют условию, то есть что все углы — такие, как указано на рисунке 3:

  1. Достаточно проверить, что $DE$ — биссектриса угла $ADB$: $$\frac{\left | AE \right |}{\left | EB \right |}=\frac{\left | AE \right |}{\left | EC \right |}=\frac{\left | EC \right |}{\left | EB \right |}=\frac{\sin 20^{\circ}\sin 70^{\circ}}{\sin 50^{\circ}\sin 40^{\circ}}=$$ $$\frac{2\sin 20^{\circ}\cos 20^{\circ}}{2\sin 50^{\circ}\sin 40^{\circ}}=\frac{\sin 30^{\circ}}{\sin 50^{\circ}}=\frac{\left | AD \right |}{\left | DB \right |}.$$
    Здесь мы снова используем теорему синусов. А вот чисто геометрическое доказательство.
  2. Рис. 4

    Рис. 4

  3. Треугольник $ECB$ имеет ось симметрии, поскольку $\widehat{CEB}=\widehat{CBE}$. Пусть $K$ — точка, симметричная точке $O$ относительно этой оси (рис. 4). Тогда треугольник $KCD$ равносторонний ($\left | KC \right |=\left | OC \right |=\left | DC \right |=a,~\widehat{KCD}=60^{\circ}$), и потому $\left | KD \right |=a,~\widehat{DKC}=\widehat{KDC}=60^{\circ}$, а $\bigtriangleup KBE\cong \bigtriangleup OEB$, и потому $
    \widehat{BEK}=30^{\circ},~\widehat{EKB}=80^{\circ},~\left | EK \right |=\left | OB \right |=a$. Итак, треугольник $EKD$ равнобедренный, $\widehat{EKD}=40^{\circ}$, поэтому $\widehat{KED}=\widehat{KDE}=70^{\circ},$ $\widehat{ODE}=70^{\circ}- \widehat{ODK}=70^{\circ}-\left ( 80^{\circ} -60^{\circ}\right )=50^{\circ},$ $\widehat{OED}=70^{\circ}-40^{\circ}=30^{\circ}.$

Н. Васильев,
Я. Суконник

М838. О разбиении точек, лежащих на сторонах треугольника, на множества

Задача из журнала “Квант” (1984, №3)

Условие

Все точки, лежащие на сторонах правильного треугольника $ABC$ разбиты на два множества $E_{1}$ и $E_{2}$. Верно ли, что для любого такого разбиения в одном из множеств $E_{1}$ и $E_{2}$ найдется тройка вершин прямоугольного треугольника?

рис. 1

Ответ

Верно.

Доказательство

Доказательство проведем от противного. Пусть точки множества $E_{1}$ окрашены синим цветом, множества $E_{2}$ – красным. Предположим, что не существует прямоугольного треугольника с одноцветными вершинами, и рассмотрим правильный шестиугольник, вписанный в треугольник $ABC$ (см. рисунок 1). Каждые две его противоположные вершины должны быть окрашены по-разному — если, например, противоположные вершины $P$ и $Q$ синие, то любая из остальных четырех вершин должна быть красной, так как образует вместе с $P$ и $Q$ прямоугольный треугольник: но тогда любые три из этих красных точек образуют запрещенный одноцветный прямоугольный треугольник.

рис. 2

Ясно, что в таком случае найдутся две соседние разноцветные вершины шестиугольника. Либо эти две вершины, либо противоположные им (тоже разноцветные!) лежат на одной из сторон треугольника. Пусть для определенности на стороне $AB$ лежат синяя вершина $К$ и красная $L$, тогда противоположные им вершины $K’$ и $L’$ будут красной и синей (см. рисунок 3). Но тогда в какой бы цвет ни была окрашена вершина $А$, один из
прямоугольных треугольников $AKL’$ и $ALK’$ будет одноцветным. Противоречие.

рис. 3

Это рассуждение показывает, что даже множество из восьми точек — вершин шестиугольника и любых двух вершин треугольника — нельзя разбить на подмножества без прямоугольных треугольников.

Н.Б. Васильев, В.Н. Дубровский

M1626. О сумме длин отрезков в треугольнике, вписанном в окружность

Задача из журнала «Квант» (выпуск №1, 1998).

Условие

В треугольнике $ABC$ угол $A$ является наименьшим. Точки $B$ и $C$ делят окружность, описанную около этого треугольника, на две дуги. Пусть $U$ — внутренняя точка той дуги с концами $B$ и $C$, которая не содержит точку $A$. Серединные перпендикуляры к отрезкам $AB$ и $AC$ пересекают прямую $AU$ в точках $V$ и $W$ соответственно. Прямые $BV$ и $CW$ пересекаются в точке $T$. Докажите, что $$AU = TB + TC.$$

Решение

Нетрудно доказать, что если $\angle A$ — наименьший из углов $\triangle ABC$, то точка $T$ находится внутри этого треугольника. Пусть прямые $BV$ и $CW$ пересекают окружность, описанную около $\triangle ABC$, вторично в точках $B_1$ и $C_1$ соответственно (рис. 1).

В силу симметрии относительно серединного перпендикуляра к стороне $AB$ имеем $AU = BB_1$. Аналогично, $AU = CC_1$. Следовательно, $BB_1 = CC_1$, а значит, и $TB = TC_1$ ($BCB_{1}C_{1}$ — равнобедренная трапеция). Тогда $TB + TC = TC_1 + TC = CC_1 = AU$, что и требовалось доказать.

Замечания

  1. Если $\angle A = 30 ^ \circ$, а $O$ — центр окружности, описанной около $\triangle ABC$, то $|BT — CT| = OT$.
  2. Если отказаться от требования минимальности угла $A$, то (при условии, что прямые $BV$ и $CW$ действительно пересекаются, а не параллельны) справедливо следующее утверждение: из отрезков $AU$, $TB$ и $TC$ один равен сумме двух других. Например, в ситуации, изображенной на рисунке 2, $TB = AU + TC$.

M1722. Количество целых точек

Задача из журнала «Квант»(2000, №5)

Условие

Пусть [latex]a,b[/latex] — натуральные числа. Проведем через точку [latex](a;b)[/latex] прямую, отсекающую от первого координатного угла треугольник.
а) Докажите, что количество точек с целыми неотрицательными координатами, которые лежат внутри или на сторонах этого треугольника, больше, чем [latex]2 \cdot a \cdot b + a + b[/latex].
б) Докажите, что эта оценка точная: через точку [latex](a;b)[/latex] можно провести прямую, отсекающую от первого координатного угла треугольник, внутри и на сторонах которого всего [latex]2 \cdot a \cdot b + a + b[/latex] точек с целыми неотрицательными координатами.

Решение

Рассмотрим прямоугольник [latex]OABC[/latex] с центром в точке [latex]P(a;b)[/latex], и сторонами, параллельными осям координат(рис.1). Внутри и на сторонах этого прямоугольника всего [latex](2 \cdot a + 1) \cdot (2 \cdot b+1) = [/latex] [latex] 4\cdot a \cdot b + 2\cdot a + 2 \cdot b +1[/latex] целочисленных точек.
 
method-draw-image (8)
Pис.1
 
Чуть-чуть сдвинем точку [latex]A[/latex] вправо. Через полученную точку [latex]A'[/latex] и точку [latex]P[/latex] проведем прямую до пересечения с осью ординат в точке [latex]C'[/latex]. Если сдвиг был достаточно мал, то в треугольнике [latex]OA’C'[/latex] не появится ни одной точки с целыми координатами, которой не было бы в треугольнике [latex]OAC[/latex].
При центральной симметрии относительно [latex]P[/latex] любая целочисленная точка прямоугольника [latex]OABC[/latex] переходит в целочисленную точку этого же прямоугольника. Поэтому все отличные от [latex]P[/latex] целочисленные точки прямоугольника разбиваются на пары точек, симметричных относительно [latex]P[/latex].
Итак, если [latex]A'[/latex] достаточно близка к точке [latex]A[/latex], то внутри и на границе треугольника [latex]OA’C'[/latex] расположена ровно половина отличных от [latex]P[/latex] целочисленных точек, т.е. [latex]2 \cdot a \cdot b + a + b[/latex] точек. Вместе с точкой [latex]P[/latex] получаем всего [latex]2 \cdot a \cdot b + a + b + 1[/latex] точек. Мы решили пункт б).
 
Теперь займемся пунктом а). Для определенности, пусть прямая отсекает от первого координатного угла треугольник [latex]OA_1C_1[/latex], где точка [latex]A_1[/latex] расположена правее точки [latex]A[/latex](рис.2).
 
method-draw-image (9)
Рис.2
 
Чтобы получить треугольник [latex]OA_1C_1[/latex] из треугольника [latex]OAC[/latex], достаточно «отрезать» от последнего треугольник [latex]CC_{1}P[/latex] и добавить треугольник [latex]AA_{1}P[/latex].
Но при центральной симметрии относительно точки [latex]P[/latex] треугольник [latex]CC_{1}P[/latex] переходит в треугольник, являющийся частью треугольника [latex]AA_{1}P[/latex](закрашенный на рисунке 2). Целочисленные координаты при этом переходят в целочисленные. Задача решена.