Частные производные высших порядков

Частные производные высших порядков определяются при помощи индукции. Если говорить неформально, то каждая частная производная порядка больше чем 1 определяется, как производная от производной предыдущего порядка.
 

Определение

Частная производная (по независимым переменным) от частной производной порядка $m-1$ называется частной производной порядка $m(m=1,2,…)$.
Частная производная, полученная  с помощью дифференцирования по разным переменным, называется смешанной частной производной.
Частные производные высших порядков сохраняют все те же свойства, что и обычные частные производные.

Пример

Пусть дана функция $f(x,y,z)$.
Частной производной первого порядка по $x$ будет $\frac { df }{ dx } $.
Частной производной второго порядка по $x$ будет $\frac { { d }^{ 2 }f }{ d{ x }^{ 2 } } $
Смешанной производной третьего порядка будет $\frac { { d }^{ 3 }f }{ d{ x }^{ 2 }dy }$

Геометрический смысл частной производной

показать

Использованная литература

Частные производные высших порядков

Тест на понимание темы «Частные производные высших порядков»

Таблица лучших: Частные производные высших порядков

максимум из 3 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Связь дифференцируемости функции в точке с непрерывностью в точке

Если у Вас возникли трудности с понятием дифференцируемости или непрерывности функции в точке в одномерном случае, то перейдите по ссылкам.

Как и в случае действительных функций одного действительного переменного, есть еще одно необходимое условие дифференцируемости функции нескольких переменных, связанное с ее непрерывностью.

Теорема. Если действительная функция нескольких действительных переменных дифференцируема в некоторой точке, то она непрерывна в этой точке.
Доказательство
Пусть функция f(x) непрерывна в точке a. Тогда ее полное приращение в точке a можно записать в виде

\Delta f(a)=\sum\limits_{k=1}^{n}{\frac{df(a)}{dx_{k}}}\Delta x_{k}+\alpha(\Delta x)|\Delta x|,

где \alpha(\Delta x)\rightarrow 0 при \Delta x\rightarrow 0. Из этого представления следует, что существует предел

\lim\limits_{\Delta x\rightarrow 0}{\Delta f(a)}=\sum\limits_{k=1}^{n}{\frac{df(a)}{dx_{k}}}\lim\limits_{\Delta x\rightarrow 0}{\Delta x_{k}}+\lim\limits_{\Delta x\rightarrow 0}{(\alpha(\Delta x)|\Delta x|)}=0,

означающий, что функция f(x) непрерывна в точке a.

Литература

Тест:Связь дифференцируемости функции в точке с непрерывностью в точке

Предлагаем проверить свои знания


Таблица лучших: Тест:Связь дифференцируемости функции в точке с непрерывностью в точке

максимум из 10 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных