Суммируемостью рядов Фурье методом Фейера

Ядро Фейера

Зададим непрерывную и $2\pi$-периодическую функцию $f(x)$. Рассмотрим последовательность $S_n(x)$ частичных сумм ряда Фурье функции $f(x)$, где $$S_n(x) = \dfrac{1}{\pi} \int \limits_{-\pi}^\pi f(x + t) \cdot D_n(t)dt,(1)$$ а $D_n(t)$ — ядро Дирихле: $$D_n(t) = \dfrac{1}{2} + \cos t + \ldots + \cos nt = \dfrac{\sin(n + \frac{1}{2})t}{2 \cdot \sin \frac{t}{2}}.(2)$$ Определим суммы Фейера как средние арифметические сумм $S_0(x), S_1(x),\ldots, S_n(x)$: $$\sigma_n(x) = \dfrac{S_0(x) + \ldots + S_n(x)}{n+1}.(3)$$

Подставляя в данную формулу выражение для частичной суммы ряда Фурье через ядро Дирихле, получаем, что $$\sigma_n(x) = \dfrac{1}{\pi} \int \limits_{-\pi}^\pi f(x + t) \dfrac{D_0(t) + \ldots + D_n(t)}{n + 1} dt.$$ Обозначим $$F_n(t) = \dfrac{D_0(t) + \ldots + D_n(t)}{n + 1},(4)$$ тогда $$\sigma_n(x) = \dfrac{1}{\pi} \int \limits_{-\pi}^\pi f(x + t) F_n(t) dt.(5)$$

Функцию $F_n(t)$ назовём ядром Фейера. Приведём следующие свойства ядра Фейера:

  1. $F_n(t)$ — четная, $2\pi$-периодическая и непрерывная функция;
  2. $\dfrac{1}{\pi} \int \limits_{-\pi}^\pi F_n(t)dt = 1$;
  3. $F_n(t) \ge 0$;
  4. $\lim \limits_{n\to\infty} \max \limits_{\delta \le t \le \pi} F_n(t) = 0$ при любом $\delta \in (0, \pi)$.
  5. Доказательство

    Свойства 1) и 2) сразу следуют из формулы (4) и соответствующих свойств ядер Дирихле.

    Докажем свойство 3). Подставляя в формулу (4) для ядра Фейера выражение (2) для ядер Дирихле, получаем $$(n + 1) \cdot F_n(t) = D_0(t) + \ldots + D_n(t) = \sum_{k=0}^{n}\dfrac{\sin(k + \frac{1}{2})x}{2\sin \frac{x}{2}} =$$ $$=\dfrac{1}{4\sin^2 \frac{x}{2}}\sum_{k=0}^{n}2 \cdot \sin \frac{x}{2} \cdot \sin(k + \frac{1}{2})x = \dfrac{1 — \cos(n + 1)x}{4\sin^2 \frac{x}{2}} \ge 0. (6)$$

    Докажем свойство 4). Из равенства (6) следует, что $\sup \limits_{x \in [\delta, \pi]} F_n(x) \le \dfrac{2}{4\cdot \sin^2 \frac{\delta}{2}} \cdot \dfrac{1}{n + 1} \rightarrow 0$ при $n \rightarrow \infty$, $0 < \delta < \pi$.

    Теорема (Фейера).

    Последовательность $\{\sigma_n(x)\}$ сумм Фейера $2\pi$-периодической непрерывной функции $f(x)$ равномерно сходится к функции $f(x)$.

    Доказательство.

    Докажем равномерную непрерывность $f(x)$ на $\mathbb{R}$.

    Равномерная непрерывность $f(x)$ показать

    Используя свойства 2) и 3) ядра Фейера, оценим разность $\sigma(x) — f(x)$. Получаем, что $\sigma(x) — f(x) = \dfrac{1}{\pi} \int \limits_{-\pi}^\pi (f(x + t) — f(x)) F_n(t)dt$, $$\left| \sigma(x) — f(x) \right| \le \dfrac{1}{\pi} \int \limits_{-\pi}^\pi \left| f(x + t) — f(x) \right| F_n(t)dt. (7)$$

    Зафиксируем $\varepsilon > 0$. Воспользуемся равномерной непрерывностью функции $f(x)$ на $\mathbb{R}$ и найдём $\delta > 0$ такое, что $\forall x \in \mathbb{R}$ и $\forall \left| t \right| < \delta$ выполнено равенство $\left| f(x + t) — f(x) \right| < \dfrac{\varepsilon}{2}$.

    Разобьём отрезок интегрирования $[-\pi, \pi]$ в формуле (7) на три отрезка: $[-\pi, -\delta], [-\delta, \delta]$ и $[\delta, \pi]$.

    Воспользовавшись свойствами 2) и 3) ядра Фейера, получаем, что $$\dfrac{1}{\pi} \int \limits^{\delta}_{-\delta} \left| f(x + t) — f(x) \right| F_n(t) dt \le \dfrac{1}{\pi} \int \limits^{\delta}_{-\delta} \dfrac{\varepsilon}{2} F_n(t) dt \le$$ $$\le \dfrac{\varepsilon}{2\pi} \int \limits^{\delta}_{-\delta} F_n(t)dt = \dfrac{\varepsilon}{2}. (8)$$

    Из непрерывности на $\mathbb{R}$ $2\pi$-периодичной функции $f(x)$ следует её ограниченность на $\mathbb{R}$. Пусть $\left| f(x) \right| < M$. Воспользуемся свойством 4) ядра Фейера и найдём такое $N$, что $\forall n > N$ выполнено неравенство $$\max \limits_{t \in [\delta, \pi]} F_n(t) < \frac{\varepsilon}{8M}.$$

    Тогда $\forall n > N$ справедливо неравенство $$\dfrac{1}{\pi} \int \limits^{\pi}_{\delta} \left| f(x + t) — f(x) \right| F_n(t)dt \le \dfrac{1}{\pi} \int \limits^{\pi}_{\delta} (\left| f(x + t) \right| + \left| f(x) \right|) F_n(t)dt \le$$ $$\le \dfrac{2M}{\pi} (\pi — \delta) \max \limits_{t \in [\delta, \pi]} F_n(t) < 2M \dfrac{\varepsilon}{8M} = \dfrac{\varepsilon}{4}. (9)$$

    Аналогично для всех $n > N$: $$\dfrac{1}{\pi} \int \limits^{-\delta}_{-\pi} \left| f(x + t) — f(x) \right| F_n(t)dt < \dfrac{\varepsilon}{4}. (10)$$

    Следовательно, для любого $x \in \mathbb{R}$ и для всех $n > N$ выполнено неравенство $\left| \sigma_n(x) — f(x) \right| < \varepsilon$ (из неравенств (7) — (10)), которое означает, что последовательность сумм Фейера $\sigma_n(x)$ равномерно сходится на $\mathbb{R}$ к функции $f(x)$.

    Пример показать

    Литература

    Суммируемость рядов Фурье методом Фейера

    Тест по теме «Суммируемость рядов Фурье методом Фейера».

Ряды Фурье по тригонометрической системе

Пусть функция $f$ абсолютно интегрируема на $[-\pi ,\pi ]$ в несобственном смысле. Найдем выражение для частичной суммы ее ряда Фурье по тригонометрической системе

$${ S }_{ n }(x,f)=\frac { { a }_{ 0 } }{ 2 } +\sum _{ k=1 }^{ n }{ { a }_{ k } } \cos { kx } +{ b }_{ k }\sin { kx= } $$
$$=\frac { 1 }{ 2\pi  } \int\limits_{ -\pi  }^{ \pi  }{ f(t)dt+\sum _{ k=1 }^{ n }{ \frac { 1 }{ \pi  }  }  }\int\limits_{ -\pi }^{ \pi }{ f(t)[\cos { kt\cos { kx } +\sin { kt\sin { kx } } } }]dt=$$ $$=\frac { 1 }{ \pi } \int\limits _{ -\pi }^{ \pi }{ f(t)\left[ \frac { 1 }{ 2 } +\sum _{ k=1 }^{ n }{ \cos { k(t-x) } } \right] dt }$$

Обозначим
$${ D }_{ n }(t)=\frac { 1 }{ 2 } +\sum _{ k=1 }^{ n }{ \cos { kt }  }. $$
Функция ${ D }_{ n }(t)$ называется ядром Дирихле. Тогда получим
$${ S }_{ n }(x,f)=\frac { 1 }{ \pi  } \int\limits _{ -\pi  }^{ \pi  }{ { D }_{ n } } (t-x)f(t)dt.$$
Интеграл в правой части называется интегралом Дирихле.

Свойства ядра Дирихле

  1. $\quad { D }_{ n }(0)=n+\frac { 1 }{ 2 } \quad (n=0,1,…).$

  2. $\quad  \frac { 1 }{ \pi  } \int\limits _{ -\pi  }^{ \pi  }{ { D }_{ n } } (t)dt=1\quad (n=0,1,…).$

  3. Доказательство свойств 1 и 2 вытекает из определения ядра Дирихле.

  4. $\quad { D }_{ n }(t)=\frac { \sin { (n+\frac { 1 }{ 2 }  } )t }{ 2\sin { \frac { t }{ 2 }  }  } \quad (n=0,1,…,\quad t\neq 2\pi k,\quad k\in N).$
  5. Доказательство показать
  6. $\quad \int\limits _{ -\pi  }^{ 0 }{ { D }_{ n } } (t)dt=\int\limits _{ 0 }^{ \pi  }{ { D }_{ n } } (t)dt=\frac { \pi  }{ 2 },$ или $\frac { 2 }{ \pi  } \int\limits _{ 0 }^{ \pi  }{ { D }_{ n } } (t)dt=1$

    1. Следствие

      Пусть $0<\delta <\pi ,\quad  x\in [-\pi,\pi ]$, $\quad 2\pi$-периодическая функция $f$ абсолютно интегрируема на $[-\pi,\pi ].$ Тогда
      $${ S }_{ n }(x,f)=\frac { 1 }{ \pi  } \int\limits _{ 0 }^{ \delta  }{ { D }_{ n } } (t)[f(x+t)+f(x-t)]dt+\overline { o } (1)\quad (n\rightarrow \infty ).$$

      Доказательство показать

      Теорема(принцип локализации)

      Пусть $2\pi $-периодическая функция $f$ абсолютно интегрируема на отрезке $[-\pi ,\pi ]$. Тогда сходимость ряда Фурье функции $f$ в точке ${ x }_{ 0 } \in R$ зависит от существования при $n\rightarrow \infty$ предела интеграла
      $$\frac { 1 }{ \pi  } \int\limits _{ 0 }^{ \delta  }{ { D }_{ n } } (t)[f({ x }_{ 0 }+t)+f({ x }_{ 0 }-t)]dt,$$
      где $\delta$ — сколь угодно малое положительное число. Иначе говоря, сходимость ряда Фурье в точке ${ x }_{ 0 }$ определиться лишь поведением функции $f$ в любой сколь угодно малой окрестности точки ${ x }_{ 0 }.$

      Разложение в ряд Фурье линейной функции ($f\left( x \right) =kx+b$)

      Литература

      Тест

      Проверьте свои знания


      Таблица лучших: Ряды Фурье по тригонометрической системе

      максимум из 18 баллов
      Место Имя Записано Баллы Результат
      Таблица загружается
      Нет данных