Теорема об аддитивной группе многочленов

Теорема. Пусть $P\left[x\right]$ — множество многочленов над полем от переменной $x,$ $+$ — операция сложения многочленов. Тогда $\left( P\left[x\right],+ \right)$ — абелева группа.

Очевидно, $P\left[x\right]\neq \varnothing,$ $+$ — БАО. Проверим выполнение аксиом абелевой группы:

  1. Ассоциативность операции: $$\forall u\left(x\right),v\left(x\right),w\left(x\right) \in P\left[x\right]: \left(u\left(x\right)+v\left(x\right)\right)+w\left(x\right)=u\left(x\right)+\left(v\left(x\right)+w\left(x\right)\right).$$ Как известно, операция сложения многочленов обладает ассоциативностью.
  2. Коммутативность операции: $$\forall u\left(x\right),v\left(x\right) \in P\left[x\right]:u\left(x\right)+v\left(x\right)=v\left(x\right)+u\left(x\right).$$ Сложение многочленов также обладает и коммутативностью.
  3. Покажем что существует нейтральный элемент по сложению, а именно: $$\exists e \in P\left[x\right]\; \forall u\left(x\right) \in P\left[x\right]: u\left(x\right)+e=e+u\left(x\right)=u\left(x\right).$$ Таким элементом выступает число $0,$ которое можно рассматривать как одночлен, или как многочлен с коэффициентами равными нулю. Из определения сложения многочленов, сложение с ним не изменит коэффициенты исходного многочлена, т.к. $0$ является нейтральным элементом для сложения чисел.
  4. Наконец, покажем существование противоположного элемента: $$\forall u\left(x\right) \in P\left[x\right]\; \exists -u\left(x\right)\in P\left[x\right]: u\left(x\right)+\left(-u\left(x\right)\right)=-u\left(x\right)+u\left(x\right)=e=0.$$ Получить такой элемент для любого многочлена можно просто заменив все его коэффициенты на противоположные (простыми словами — поменяв их знаки). Суммой таких многочленов, в силу противоположности их коэффициентов как чисел, будет многочлен, все коэффициенты которого равны нулю, или просто $0.$

Итак, все аксиомы выполняются, следовательно $\left( P\left[x\right],+ \right)$ — абелева группа.

Примеры решения задач

Читателю предлагается решить эти примеры и сравнить своё решение с приведённым.

  1. Является ли $\left( P^3\left[x\right],+ \right),$ где $P^3\left[x\right]$ — множество многочленов третьей степени, абелевой группой?
    Решение

    Очевидно, операция сложения многочленов сохраняет все свои свойства на этом множестве, а нейтральный и противоположный элементы ему принадлежат $\Rightarrow$ все аксиомы выполняются. Также, $+$ остается БАО, а $P^3\left[x\right]\neq \varnothing.$ Значит, ответ положительный.

  2. Является ли $\left( P^3\left[x\right],\cdot \right),$ где $P^3\left[x\right]$ — множество многочленов третьей степени, а $\cdot$ — операция умножения многочленов, абелевой группой?
    Решение

    Аналогично первому примеру, $P^3\left[x\right]\neq \varnothing.$ Однако, в случае умножения, произведением двух многочленов $3$-й степени будет многочлен $6$-й степени (по лемме о степени произведения), что выходит за границы рассматриваемого множества. Значит, $\left( P^3\left[x\right],\cdot \right)$ — не абелева группа.

Смотрите также

  1. А.Г. Курош Курс высшей алгебры. — Издание девятое. — Москва: Наука, 1968. — 431с. (c. 132-134)
  2. К.Д. Фадеев Лекции по алгебре. — Москва: Наука, 1984. — 416с. (c. 54-55)
  3. А.И. Кострикин Введение в алгебру. Основы алгебры. — Москва: Физматлит, 1994. -320с. (с. 211-212)
  4. Белозёров Г.С. Конспект лекций.

Аддитивная группа многочленов

Этот тест призван проверить Ваши знания по теме «Аддитивная группа многочленов».

Операции над многочленами

Сложение многочленов

Определение. Пусть даны многочлены $$u\left(x\right)=a_{n}x^{n}+a_{n-1}x^{n-1}+\ldots+a_{2}x^{2}+a_{1}x+a_{0},$$ $$v\left(x\right)=b_{m}x^{m}+b_{m-1}x^{m-1}+\ldots+b_{2}x^{2}+b_{1}x+b_{0}.$$ Будем считать, что $n\geqslant m.$ Тогда их суммой является многочлен $$s\left(x\right)=u\left(x\right)+v\left(x\right)=c_{n}x^{n}+c_{n-1}x^{n-1}+\ldots+c_{2}x^{2}+c_{1}x+c_{0},$$ каждый коэффициент $c_{i}$ которого получается сложением соответствующих коэффициентов $a_{i}$ и $b_{i},$ $\left(i = 0, 1, \ldots, n-1, n\right).$ Причём, если $n\geqslant i>m,$ то считаем, что $b_{i}=0.$

Замечание. Можно определить и вычитание многочленов, как сложение с противоположным. «Нулём» будет выступать нулевой многочлен $\left(0\right),$ а противоположный данному многочлен получается заменой всех коэффициентов на противоположные: $$u\left(x\right)=a_{n}x^{n}+a_{n-1}x^{n-1}+\ldots+a_{2}x^{2}+a_{1}x+a_{0},$$ $$-u\left(x\right)=-a_{n}x^{n}-a_{n-1}x^{n-1}-\ldots-a_{2}x^{2}-a_{1}x-a_{0}.$$

Основные свойства сложения

1. Степень суммы. Степень суммы двух многочленов меньше либо равна наибольшей из степеней слагаемых. (Лемма)

2. Коммутативность: $u\left(x\right)+v\left(x\right)=v\left(x\right)+u\left(x\right).$

Пусть $$u\left(x\right)+v\left(x\right)=s_{1}\left(x\right),\; v\left(x\right)+u\left(x\right)=s_{2}\left(x\right).$$ Рассмотрим коэффициенты $s_{1}\left(x\right)$ и $s_{2}\left(x\right).$ Они равны в силу коммутативности сложения чисел $\left(a_{i}+b_{i}=b_{i}+a_{i}\right),$ а значит, $s_{1}\left(x\right)=s_{2}\left(x\right),$ что доказывает коммутативность сложения многочленов.

3. Ассоциативность: $\left(u\left(x\right)+v\left(x\right)\right)+w\left(x\right)=u\left(x\right)+\left(v\left(x\right)+w\left(x\right)\right).$

Пусть коэффициенты $u\left(x\right),$ $v\left(x\right)$ и $w\left(x\right)$ равны $a_{i},$ $b_{i},$ и $c_{i}$ соответственно. Зададим их суммы: $$\left(u\left(x\right)+v\left(x\right)\right)+w\left(x\right)=f\left(x\right),$$ $$u\left(x\right)+\left(v\left(x\right)+w\left(x\right)\right)=g\left(x\right).$$ Для доказательства ассоциативности, докажем равенство $f\left(x\right)$ и $g\left(x\right).$ Рассмотрим общие формулы их коэффициентов: $$f_{i}=\left(a_{i}+b_{i}\right)+c_{i},$$ $$g_{i}=a_{i}+\left(b_{i}+c_{i}\right).$$ Аналогично коммутативности, равенство этих двух многочленов следует из ассоциативности операции сложения для чисел, из чего и следует ассоциативность сложения многочленов.

Умножение многочленов

Определение. Пусть даны многочлены $$u\left(x\right)=a_{n}x^{n}+a_{n-1}x^{n-1}+\ldots+a_{2}x^{2}+a_{1}x+a_{0},$$ $$v\left(x\right)=b_{m}x^{m}+b_{m-1}x^{m-1}+\ldots+b_{2}x^{2}+b_{1}x+b_{0}.$$ Тогда их произведением является многочлен $$p\left(x\right)=u\left(x\right)\cdot v\left(x\right)=c_{n+m}x^{n+m}+c_{n+m-1}x^{n+m-1}+\ldots+c_{2}x^{2}+c_{1}x+c_{0},$$ образующийся в результате простого умножения $u\left(x\right)\cdot v\left(x\right)$ и приведения подобных членов. Таким образом, каждый коэффициент произведения $$\displaystyle c_{i}=\sum_{\alpha+\beta=i}^{}a_{\alpha}b_{\beta},\; \left(i = 0, 1, \ldots, n+m-1, n+m\right).$$

Замечание. Для многочленов операция обратная умножению (деление) не определена. Однако, существует алгоритм деления с остатком.

Основные свойства умножения

1. Степень произведения. Степень произведения двух многочленов равна сумме степеней множителей. (Лемма)

2. Коммутативность: $u\left(x\right)\cdot v\left(x\right)=v\left(x\right)\cdot u\left(x\right).$

Рассмотрим многочлены $u\left(x\right)$ и $v\left(x\right)$ из определения произведения. Пусть $$f\left(x\right)=u\left(x\right)\cdot v\left(x\right)=c_{n+m}x^{n+m}+c_{n+m-1}x^{n+m-1}+\ldots+c_{2}x^{2}+c_{1}x+c_{0},$$ $$g\left(x\right)=v\left(x\right)\cdot u\left(x\right)=d_{n+m}x^{n+m}+d_{n+m-1}x^{n+m-1}+\ldots+d_{2}x^{2}+d_{1}x+d_{0}.$$ Тогда, коэффициенты многочлена $f\left(x\right)$ равны $\displaystyle c_{i}=\sum_{\alpha+\beta=i}^{}a_{\alpha}b_{\beta},$ а многочлена $g\left(x\right)$ — $\displaystyle d_{i}=\sum_{\alpha+\beta=i}^{}b_{\beta}a_{\alpha}.$ Из очевидного равенства этих сумм вытекает равенство $f\left(x\right)$ и $g\left(x\right),$ а значит, $u\left(x\right)\cdot v\left(x\right)=v\left(x\right)\cdot u\left(x\right)$ и коммутативность доказана.

3. Ассоциативность: $\left(u\left(x\right)\cdot v\left(x\right)\right)\cdot w\left(x\right)=u\left(x\right)\cdot \left(v\left(x\right)\cdot w\left(x\right)\right).$

Пусть коэффициенты $u\left(x\right),$ $v\left(x\right)$ и $w\left(x\right)$ равны $a_{i},$ $b_{i},$ и $c_{i}$ соответственно, а именно: $$u\left(x\right)=a_{n}x^{n}+a_{n-1}x^{n-1}+\ldots+a_{2}x^{2}+a_{1}x+a_{0},$$ $$v\left(x\right)=b_{m}x^{m}+b_{m-1}x^{m-1}+\ldots+b_{2}x^{2}+b_{1}x+b_{0},$$ $$w\left(x\right)=c_{s}x^{s}+c_{s-1}x^{s-1}+\ldots+c_{2}x^{2}+c_{1}x+c_{0}.$$ Теперь, зададим их произведения в нужном порядке: $$f\left(x\right)=u\left(x\right)\cdot v\left(x\right)=d_{n+m}x^{n+m}+d_{n+m-1}x^{n+m-1}+\ldots+d_{2}x^{2}+d_{1}x+d_{0},$$ $$g\left(x\right)=v\left(x\right)\cdot w\left(x\right)=r_{m+s}x^{m+s}+r_{m+s-1}x^{m+s-1}+\ldots+r_{2}x^{2}+r_{1}x+r_{0},$$ $$h\left(x\right)=\left(u\left(x\right)\cdot v\left(x\right)\right)\cdot w\left(x\right)=k_{n+m+s}x^{n+m+s}+\ldots+k_{2}x^{2}+k_{1}x+k_{0},$$ $$l\left(x\right)=u\left(x\right)\cdot \left(v\left(x\right)\cdot w\left(x\right)\right)=p_{n+m+s}x^{n+m+s}+\ldots+p_{2}x^{2}+p_{1}x+p_{0}.$$ Для доказательства ассоциативности, докажем равенство многочленов $h\left(x\right)$ и $l\left(x\right).$ Рассмотрим общую формулу коэффициента $h\left(x\right):$ $$\displaystyle k_{i}=\sum_{q+\gamma =i}d_{q}c_{\gamma }=\sum_{q+\gamma =i}\left( \sum_{\alpha +\beta =q}^{}\left(a_{\alpha }b_{\beta }\right)\cdot c_{\gamma }\right) = \sum_{\alpha +\beta +\gamma=i}a_{\alpha }b_{\beta }c_{\gamma }.$$ Теперь покажем, что общую формулу коэффициента $l\left(x\right)$ можно привести к такому же виду: $$\displaystyle p_{i}=\sum_{\alpha+q=i}a_{\alpha}r_{q}=\sum_{\alpha+q=i}\left( a_{\alpha}\cdot \sum_{\beta+\gamma=q}b_{\beta}c_{\gamma} \right)= \sum_{\alpha +\beta +\gamma=i}a_{\alpha }b_{\beta }c_{\gamma }.$$ Из равенства коэффициентов следует равенство многочленов, что и доказывает ассоциативность.

Примеры решения задач

Читателю предлагается решить эти примеры и сравнить своё решение с приведённым.

  1. Сложить многочлены $3x^4+2x^3-4x^2-8x+10$ и $8x^3-4x^2-9x-10.$

    Решение

    Воспользуемся определением суммы многочленов: $$\left(3x^4+2x^3-4x^2-8x+10\right)+\left(8x^3-4x^2-9x-10\right)=$$ $$=\left(3+0\right)x^4+\left(2+8\right)x^3+\left(-4+\left(-4\right)\right)x^2+\left(-8+\left(-9\right)\right)x+\left(10-10\right)=$$ $$=3x^4+10x^3-8x^2-17x.$$

  2. Найти разность $7x^7+10x^6-20x^5+10x^4-13x^3+8x^2+11x+19$ и $5x^7-10x^5+7x^4+x^3+11x^2+20x+11.$

    Решение

    Сложим первый многочлен с противоположным второму: $$7x^7+10x^6-20x^5+10x^4-13x^3+8x^2+11x+19 +$$ $$+\left(-5x^7+10x^5-7x^4-x^3-11x^2-20x-11\right)=$$ $$=\left(7-5\right)x^7+\left(10+0\right)x^6+\left(-20+10\right)x^5+\left(10-7\right)x^4+$$ $$+\left(-13-1\right)x^3+\left(8-11\right)x^2+\left(11-20\right)x+\left(19-11\right)=$$ $$=2x^7+10x^6-10x^5+3x^4-14x^3-3x^2-9x+8.$$

  3. Найти произведение $2x^2+5x-1$ и $4x^2-x+3.$

    Решение

    Умножим два многочлена и приведём подобные: $$\left(2x^2+5x-1\right)\cdot \left(4x^2-x+3\right)=$$ $$=8x^4-2x^3+6x^2+20x^3-5x^2+15x-4x^2+x-3=$$ $$=8x^4+\left(20-2\right)x^3+\left(6-5-4\right)x^2+\left(15+1\right)x-3=$$ $$=8x^4+18x^3-3x^2+16x-3.$$

  4. Найти произведение $-3x^2+7x+9$ и $6x^2+2x+8.$

    Решение

    На этот раз, воспользуемся общей формулой коэффициента из определения произведения многочленов. Тогда: $$u\left(x\right)=-3x^2+7x+9,\;a_{2}=-3,a_{1}=7,a_{0}=9,$$ $$v\left(x\right)=6x^2+2x+8,\;b_{2}=6,b_{1}=2,b_{0}=8,$$ $$p\left(x\right)=u\left(x\right)\cdot v\left(x\right)=c_{4}x^4+c_{3}x^3+c_{2}x^2+c_{1}x+c_{0}.$$ По определению, $\displaystyle c_{i}=\sum_{\alpha+\beta=i}^{}a_{\alpha}b_{\beta},$ $\left(i=0,1,2,3,4\right).$ Вычислим их. $$c_{0}=\sum_{\alpha+\beta=0}^{}a_{\alpha}b_{\beta}=a_{0}b_{0}=9\cdot 8=72,$$ $$c_{1}=\sum_{\alpha+\beta=1}^{}a_{\alpha}b_{\beta}=a_{0}b_{1}+a_{1}b_{0}=9\cdot 2 + 7\cdot 8=74,$$ $$c_{2}=\sum_{\alpha+\beta=2}^{}a_{\alpha}b_{\beta}=a_{0}b_{2}+a_{1}b_{1}+a_{2}b_{0}=9\cdot 6+7\cdot 2+\left(-3\right)\cdot 8=44,$$ $$c_{3}=\sum_{\alpha+\beta=3}^{}a_{\alpha}b_{\beta}=a_{1}b_{2}+a_{2}b_{1}=7\cdot 6+\left(-3\right)\cdot 2=36,$$ $$c_{4}=\sum_{\alpha+\beta=4}^{}a_{\alpha}b_{\beta}=a_{2}b_{2}=-3\cdot 6=-18.$$ Имеем: $$p\left(x\right)=u\left(x\right)\cdot v\left(x\right)=-18x^4+36x^3+44x^2+74x+72.$$

Смотрите также

  1. А.Г. Курош Курс высшей алгебры. — Издание девятое. — Москва: Наука, 1968. — 431с. (c. 130-134)
  2. К.Д. Фадеев Лекции по алгебре. — Москва: Наука, 1984. — 416с. (c. 54-55)
  3. А.И. Кострикин Введение в алгебру. Основы алгебры. — Москва: Физматлит, 1994. -320с. (с. 211-212)
  4. Белозёров Г.С. Конспект лекций.

Операции над многочленами

Этот тест призван проверить Ваши знания по теме «Операции над многочленами».

Группы. Примеры групп. Простейшие следствия из аксиом.

Определение

Пусть $G\ne \varnothing$, $»*»$ — БАО на $G.$ Тогда $(G, *)$ называется группой, если выполняются следующие три аксиомы.

  • 1. Ассоциативность. $\forall a, b, c\in G~$ $~ (a*b)*c=$$a*(b*c).$
  • 2. Нейтральный элемент. $\exists e\in G ,\forall a\in G~a*e=$$e*a=a.$
  • 3. Симметрический элемент. $\forall a\in G,\exists a^{‘}\in G$$ a*a^{‘}=a^{‘}*a=e.$

Если, кроме этих трех условий выполняется условие коммутативности $\forall a, b \in G~a*b=b*a,$ то такая группа называется абелевой.

Примеры

  • 1.) $(\mathbb Z, +), (\mathbb Q^{*}, +),(\mathbb R, +)$ — аддитивные группы (по сложению всякое кольцо является абелевой группой).
  • 2.) $(\mathbb Q^{*}, \cdot), (\mathbb R^{+}, \cdot),(\mathbb R^{*}, \cdot)$ — мультипликативные группы(совокупность отличных от нуля элементов любого поля является абелевой группой).
  • 3.) $ (\mathbb C_{[-1;1]}, +) $ — множество непрерывных вещественных функций определенных на $[-1;1].$
  • 4.) $(\mathbb R^{2}, +), (a, b)+(c, d)=$$(a+c, b+d).$
  • 5.) $G_{2n},$ где $n$ — простое. Возможно по крайней мере 2 группы: Циклическая группа $ C_{2n}$ и диэдр $D_{n}$
  • grafik1grafik1

Простейшие следствия из аксиом

  • 1. Нейтральный элемент — единственный.

Доказательство. Предположим противное. Пусть $\exists e^{‘},$ так как $e^{‘}$ — нейтральный элемент, то $e^{‘}e=e^{‘}$, но $e$ тоже нейтральный элемент, а значит $e^{‘}e=e \Longrightarrow e=e^{‘}. $

  • 2. $\forall a\in G~ \exists! a^{‘},a^{‘}a=e$

Доказательство. Предположим противное. Пусть $\exists a^{»},a^{»}a=aa^{»}=e,$$ a^{‘}a=aa^{‘}=e,$$ a^{‘}aa^{»}=(a^{‘}a)a^{»}=ea^{»}=a^{»},$ $a^{‘}(aa^{»})=a^{‘}e=a^{‘} \Longrightarrow $$a^{‘}=a^{»} $

  • 3. $a*x=b,(x*b=a)$, решение единственно.

Доказательство.

Единственность.

$x_{0}$ — решение. $ax_{0}=b, a^{‘}(ax_{0})=a^{‘}b,$$ (a^{‘}a)x_{0}=a^{‘}b$, $ex_{0}=a^{‘}b, x_{0}=a^{‘}b$

Существование.

$x_{0}=a^{‘}b, a(a^{‘}b)=$$(aa^{‘})b=eb=b$

  • 4. $(a^{‘})^{‘}=a, \forall a\in G$

Доказательство. По третьей аксиоме $a^{‘}(a^{‘})^{‘}=e, a^{‘}a=e \Longrightarrow$
$a^{‘}(a^{‘})^{‘}=a^{‘}a\Longrightarrow (a^{‘})^{‘}=a$.

  • 5. $(ab)^{‘}=b^{‘}a^{‘}$

Доказательство.
$(ab)(ab)^{‘}=e, aa^{‘}=e$, $bb^{‘}=e \Longrightarrow (aa^{‘})(bb^{‘})=$$(bb^{‘})(aa^{‘})=ee \Longrightarrow $$ (bb^{‘})(aa^{‘})=e \Longrightarrow$ $(ab)(ab)^{‘}=(bb^{‘})(aa^{‘}) \Longrightarrow$ $(ab)(ab)^{‘}=(ab)b^{‘}a^{‘} \Longrightarrow$$ (ab)^{‘}=b^{‘}a^{‘}$

  • 6. $\forall n\in \mathbb N$$ a^{n}=\underset{n}{\underbrace{aa..a}}$

Доказательство.

База индукции.

$a^{1}=a$.

Предположение индукции.

Пусть $n=k, a^{k}=\underset{k}{\underbrace{aa..a}}.$

Шаг индукции.

Пусть $n=k+1, a^{k}a^{1}=a(aa..a),$ $a^{k+1}=\underset{k+1}{\underbrace{aa..a}}$.

  • 7. $\forall n, m\in \mathbb N, a^{n}a^{m}=a^{n+m}$

Доказательство.

$a^{m}=\underset{m}{\underbrace{aa..a}}, a^{n}=\underset{n}{\underbrace{aa..a}}$

$a^{n}a^{m}=\underset{n}{\underbrace{aa..a}} \cdot \underset{m}{\underbrace{aa..a}} \Longrightarrow$ $a^{n}a^{m}=\underset{n+m}{\underbrace{aa..a}}$, $\underset{n+m}{\underbrace{aa..a}}=a^{n+m} \Longrightarrow$ $a^{n+m}=a^{n}a^{m}$

 

  • 8. $\forall n, m\in \mathbb N, (a^{n})^{m}=a^{nm}$

 

Доказательство.

$(a^{n})^{m}=\underset{n}{\underbrace{(aa..a)^{m}}} \Longrightarrow$ $(a^{n})^{m}=\underset{n\cdot m}{\underbrace{(aa..a)}} \Longrightarrow$ $(a^{n})^{m}=\underset{n}{\underbrace{(aa..a)}}\cdot \underset{m}{\underbrace{(aa..a)}} $

$\underset{n}{\underbrace{(aa..a)}}=a^{n}$, $\underset{m}{\underbrace{(aa..a)}}=a^{m} \Longrightarrow$ $(a^{n})^{m}=a^{n}a^{m}$

 

  • 9. $\forall n\in \mathbb N, (a^{n})^{‘}=(a^{‘})^{n}$

 

Доказательство.

$a^{n}(a^{n})^{‘}=e, (a^{‘})^{n}=$$\underset{n}{\underbrace{(a^{‘}a^{‘}..a^{‘})}},$

$\underset{n}{\underbrace{(aa..a)}} \cdot \underset{n}{\underbrace{(a^{‘}a^{‘}..a^{‘})}}=e \Longrightarrow$ $a^{n}(a^{‘})^{n}=e \Longrightarrow$ $a^{n}(a^{‘})^{n}=a^{n}(a^{n})^{‘} \Longrightarrow$ $(a^{‘})^{n}=(a^{n})^{‘}.$
Литература

 

 

Тесты

Группы. Примеры групп. Простейшие следствия из аксиом.

Группы. Примеры групп. Простейшие следствия из аксиом.


Таблица лучших: Группы. Примеры групп. Простейшие следствия из аксиом.

максимум из 2 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Свойства коммутативности и ассоциативности



Основными свойствами бинарных алгебраических операций являются:

Коммутативность (переместительность)
Свойство бинарной алгебраической операции $ \circ ,$ при котором выполняется условие: $ \forall \ x,y \in \mathbb{P}: $ $ (x\circ y)=(y\circ x) ,$ где $ \mathbb{P} $ — некоторое рассматриваемое множество.
Ассоциативность (сочетательность)
Свойство бинарной алгебраической операции $ \circ ,$ при котором выполняется условие: $ \forall \ x,y,z \in \mathbb{P}: $ $ (x\circ y)\circ z=y\circ (x\circ z) ,$ где $ \mathbb{P} $ — некоторое рассматриваемое множество.
Дистрибутивность (распределительный закон)
Свойство согласованности некоторых двух рассматриваемых алгебраических операций $ \oplus $ и $ \otimes $ на одном и том же некотором рассматриваемом множестве $ \mathbb{P} ,$ при котором выполняется условие левой: $ \forall \ x,y,z \in \mathbb{P}: $ $ x\otimes (y\oplus z) $ $ =(x\otimes y)\oplus(x\otimes z) $; и/или правой: $ (y\oplus z) \otimes x $ $ =(y\otimes x)\oplus(z\otimes x) $ дистрибутивности.

Примеры

  1. Проверить коммутативность умножения матриц над полем вещественных чисел.
    Спойлер

    Умножение матриц
    Пусть $ \small A \in \mathbb{M} _{m \times p} ,B \in \mathbb{M} _{p \times n}: $ $ \small C=A\times B;\ C \in \mathbb{M} _{m\times n} \Rightarrow $ $ \small c_{ij}= \underset{k=1} {\overset{p} {\sum}}a_{ik}b_{kj} .$ Очевидно, что для выполнения операции умножения, количество столбцов первой матрицы должно совпадать с количеством строк второй, следовательно, мы доказали, что коммутативность не выполняется для всех матриц, однако всё ещё может выполнятся для квадратных матриц. Проверим это: выполнение коммутативности для матриц будет выглядеть, как $ \small\forall \ A,B \in \mathbb{M}_{n} \ A\times B \overset{?}{=} B\times A,$ если рассматривать результирующую матрицу поэлементно, то это можно интерпретировать, как $ \small \underset{k=1} {\overset{m} {\sum }}a_{ik}b_{kj}\overset {?}{=} \underset{k=1}{ \overset{m}{\sum}}b_{ik}a_{kj},$ то есть в первой сумме мы перемножаем строку первой матрицы на столбец второй, а во второй строку второй матрицы на столбец первой. Ясно, что результаты таких действий будут равны тогда и только тогда, когда обе матрицы будут симметрическими (то есть будут совпадать с собой транспонированными $ \small A^{T}=A$). Следовательно, коммутативность не выполняется даже для квадратных матриц.

    [свернуть]
  2. Доказать, что если ассоциативность выполняется для трёх элементов множества, то способ расстановки скобок не влияет на результат при любом количестве операндов, то есть если:
    $ \forall x,y,z \in \mathbb{P}: $ $ (x\circ y)\circ z=y\circ (x\circ z) ,$ то в выражении $ a _{1} \circ a _{2} \circ … \circ a _{n-1} \circ a _{n}, \,a_{i} \in \mathbb{P} i=\overline{1,n} $ результат не зависит от того, как мы расставим скобки.
    Спойлер

    Докажем это утверждение математической индукцией по количеству операндов.
    База индукции:
    Минимальное количество переменных равно трём, следовательно, из условия имеем: $ \small \forall \,a_{1}, a_{2}, a_{3} \in \mathbb{P}: $ $ \small ( a_{1}\circ a_{2})\circ a_{3}= a_{2}\circ (a_{1}\circ a_{3}) .$ База индукции доказана.
    Предположение индукции:
    $ \small \forall \,n \in \mathbb{N}: $результат выражения $ \small a _{1} \circ a _{2} \circ … \circ a _{n-1} \circ a _{n} \,$ не зависит от порядка расстановки скобок.
    Шаг индукции:
    Пусть предположение индукции справедливо для $ \small \forall \, n \in \mathbb{N} ,$ докажем, что тогда оно справедливо и для $ \small n+1 .$
    Пусть $ \small 1\leq p\leq m< n+1 .$ То есть можно задать справедливое разбиение: $ \small a _{1} \circ a _{2} \circ … \circ a _{n-1} \circ a _{n} = $ $ \small (a _{1} \circ a _{2} \circ … \circ a _{p-1} \circ a _{p}) \circ $ $ \small (a _{p+1} \circ … \circ a _{m-1} \circ a _{m})\circ $ $ \small (a _{m+1} \circ … \circ a _{n-1} \circ a _{n} \circ a _{n+1}) .$ Произведём замену:
    $ \small (a _{1} \circ a _{2} \circ … \circ a _{p-1} \circ a _{p}) = a $
    $ \small (a _{p+1} \circ … \circ a _{m-1} \circ a _{m}) = b $
    $ \small (a _{m+1} \circ … \circ a _{n} \circ a _{n+1}) = c $
    По базе индукции имеем $ \small (a \circ b) \circ c = a \circ (b \circ c ),$ то есть $ \small [ (a _{1} \circ a _{2} \circ … $ $ \circ a _{p-1} \circ a _{p}) \circ $ $ \small (a _{p+1} \circ … $ $ \circ a _{m-1} \circ a _{m}) ] \circ $ $ \small (a _{m+1} \circ … $ $ \circ a _{n-1} \circ a _{n} \circ a _{n+1})=$ $ \small (a _{1} \circ a _{2} \circ … $ $ \circ a _{p-1} \circ a _{p}) \circ $ $ \small [ (a _{p+1} \circ … $ $ \circ a _{m-1} \circ a _{m}) \circ $ $ \small (a _{m+1} \circ … $ $ \circ a _{n-1} \circ a _{n} \circ a _{n+1}) ].$
    В силу свободы выбора $ \small p, m,$ и свободы количества замен такого рода теорема доказана.

    [свернуть]
  3. Проверить дистрибутивность сложения матриц над полем вещественных чисел относительно умножения.
    Спойлер

    Пусть $ A \in \mathbb{M} _{m\times n}; B,C \in \mathbb{M} _{n\times m},$ докажем, что $ A\cdot (B+C)=A\cdot B+A\cdot C.$ Заметим, что $ A=\left \| a_{ij} \right \|,$ $ B=\left \| b_{ji} \right \|,$ $ C=\left \| c_{ji} \right \|,$ $ i=\overline{1,m},$ $ j =\overline{1,n}$, тогда $ A\cdot (B+C)=$ $ \ \left \| a_{ij} \right \|\cdot (\left \| b_{ji} \right \| + \left \| c_{ji} \right \|)=$ $ \ \left \| a_{ij} \right \|\cdot (\left \| b_{ji} + c_{ji} \right \|) = $ $ \ \left \| \underset{i=1}{ \overset{m}{\sum}} a_{ij} \cdot (b_{ji} + c_{ji})\right \| = $ $ \ \left \| \underset{i=1}{ \overset{m}{\sum}} a_{ij} \cdot b_{ji} + \underset{i=1}{ \overset{m}{\sum}} a_{ij} \cdot c_{ji}\right \|=$ $ \ \left \| \underset{i=1}{ \overset{m}{\sum}} a_{ij} \cdot b_{ji} \right \| + \left \| \underset{i=1}{ \overset{m}{\sum}} a_{ij} \cdot c_{ji}\right \| = $ $ \ A\cdot B+A\cdot C.$
    Правая дистрибутивность доказывается аналогично.

    [свернуть]

Источники:

Основные свойства бинарных алгебраических операций.


Таблица лучших: Основные свойства бинарных алгебраических операций.

максимум из 30 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Композиция отображений, свойство ассоциативности

Определение 1
Композицией отображений $f:U \to V$ и $g:V \to W$ называется такое отображение $ h:U \to W $ $ h = g \circ f $, что $ \forall u \in U $ $ h(u)=(g \circ f)(u)=g(f(u))=w $.
$\circ$ — символ композиции.

Определение 2
Бинарная операция «$*$» на $A$(непустом множестве) обладает свойством ассоциативности, если $\forall a,b,c \in A$ верно равенство $(a*b)*c=a*(b*c)$.

Лемма
Композиция отображений обладает свойством ассоциативности. То-есть $\forall f,g,h (f \circ g)\circ h= f\circ (g\circ h)$, где $f:W\to Q$, $g:V\to W$, $h:U\to V$, если левая и правая части существуют.

Доказательство
Нужно доказать, что $\forall f,g,h $ $ (f \circ g)\circ h=f\circ (g\circ h)$, где $f:W\to Q$, $g:V\to W$, $h:U\to V$.
$\forall u \in U $ $ [(f\circ g)\circ h](u)=(f\circ g)(h(u))=f(g(h(u)))$ и $\forall u \in U $ $ [f\circ (g\circ h)](u)=f ((g\circ h)(u))=f(g(h(u)))$, получаем что левая и правая части равны, что и доказывает теорему.

Пример 1
Пусть $f:\mathbb{R}^* \to \mathbb{R}^+$, $g:\mathbb{R}^+ \to \mathbb{R}$ и $f(u)=u^2$, $h(u)=\log{v}$, где $u\in \mathbb{R}^*$, $v\in \mathbb{R}^+$, тогда $h(u)=(g\circ f)(u)=\log{u^2}$, где $h:\mathbb{R}^* \to \mathbb{R}$.

Пример 2
Пусть $f:\mathbb{R} \to \mathbb{R}$, $g:\mathbb{R} \to \mathbb{R}^*$, $h:\mathbb{R}^* \to \mathbb{R}^+$ и $f(u)=2u, g(v)=v^2, h(w)=2^w$, где $u,v \in \mathbb{R}$, $w \in \mathbb{R}^*$, тогда $t_1(u)=(h\circ g)(u)=2^{u^2}, t_2(u)=((h \circ g)\circ f)(u)=2^{(2u)^2}$, где $t_2:\mathbb{R} \to \mathbb{R}^+$ и $t_3(u)=(g \circ h)(u)=(2u)^2$, $t_4(u)=(h\circ (g\circ f))(u)=2^{(2u)^2}$, где $t_4:\mathbb{R} \to \mathbb{R}^+$. Как видим области определений, области значений и законы отображений совпадают, поэтому они равны, то-есть $t_2=t_4$, $ (h \circ g)\circ f=h\circ (g\circ f)$.

Литература

Композиция отображений, свойство ассоциативности.

Тест на тему: «Композиция отображений, свойство ассоциативности.»


Таблица лучших: Композиция отображений, свойство ассоциативности.

максимум из 5 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных