M1753. Вершина угла на середине хорды

$\DeclareMathOperator{\tg}{tg}$

Задача из журнала «Квант» (2000 год, 6 выпуск)

Задача

Окружность, вписанная в $\triangle ABC$,  касается его сторон в точках  $A’$, $B’$, $C’$,  точка $L$ – середина отрезка $A’B’$ (см. рисунок). Докажите, что $\angle ALB$ — тупой.

Введем обычные обозначения: $AB=c$, $BC=a$, $CA=b$, p — полупериметр $\triangle ABC$. Так как $CA’=CB’=p-c$ и $CL$ биcсектриса $\angle C$, $CL= \left ( p-c \right )\cos\left ( \frac{C}{2} \right ).$ Применяя теорему косинусов к $\triangle ACL$ и $\triangle BCL$, получим $$AL^{2}=b^{2} +\left ( p-c \right )^{{2}}\cos^{2}\left ( \frac{C}{2} \right )-2b\left (p-c\right )\cos^{2}\left ( \frac{C}{2} \right ),$$$$BL^{2}=a^{2} +\left ( p-c \right )^{{2}}\cos^{2}\left ( \frac{C}{2} \right )-2a\left ( p-c\right )\cos^{2}\left ( \frac{C}{2} \right ),$$$$AL^{2}+BL^{2}-c^{2}=2\left (ab\cos C-p \left (p-c\right )\cos^{2}\left ( \frac{C}{2} \right )\right)=$$$$=\frac{2\left(ab-p\left (p-c\right )-ab\tg^{2}\left ( \frac{C}{2} \right )\right)}{\left (1+\tg ^{2}\left ( \frac{C}{2} \right )\right)}.$$Поскольку $$ab-p\left ( p-c \right )=\left( \left( p-a \right)+ \left( p-c\right)\right)\left( \left( p-b \right)+\left( p-c \right) \right)-$$ $$-\left ( p-c \right ) ( \left ( p-a \right )+ \left ( p-b\right)+\left ( p-c \right ))=\left ( p-a \right)\left ( p-b \right ),$$ $$\tg ^{2}\left ( \frac{C}{2} \right )=\frac{r^{2}}{\left ( p-c\right )^{2}}=\frac{\left ( p-a \right )\left ( p-b \right )}{p\left( p-c \right)},$$a $p\left ( p-c \right )< ab$, выражение $AL^{2}+BL^{2}-c^{2}$ отрицательно, т.е. $\angle ALB$ тупой.

А.Заславский

М778. Общая точка

Задача из журнала «Квант» (1982 год, 12 выпуск)

Условие

Дан неравнобедренный треугольник $A_{1}A_{2}A_{3}$. Пусть $a_{i}$ – его сторона, лежащая против вершины $A_{i}$ $(i = 1, 2, 3)$, $M_{i}$ – середина стороны $a_{i}$, $T_{i}$ – точка касания стороны с окружностью, вписанной в данный треугольник, $S_{i}$ – точка, симметричная $T_{i}$ относительно биссектрисы угла $A_{i}$ треугольника.

Докажите, что прямые $M_{1}S_{1}$, $M_{2}S_{2}$ и $M_{3}S_{3}$ имеют общую точку.

Доказательство

Стороны треугольника $M_{1}M_{2}M_{3}$ соответственно параллельны сторонам треугольника $A_{1}A_{2}A_{3}$. Мы докажем, что и стороны треугольника $S_{1}S_{2}S_{3}$ параллельны сторонам $A_{1}A_{2}A_{3}$. Отсюда вытекает, что $\triangle$$S_{1}S_{2}S_{3}$ гомотетичен $\triangle$$M_{1}M_{2}M_{3}$ или переводится в него параллельным переносом. Второй случай отпадает, ибо окружность, описанная около треугольника $M_{1}M_{2}M_{3}$, больше описанной окружности треугольника $S_{1}S_{2}S_{3}$. Следовательно, прямые, соединяющие соответственные вершины треугольников $S_{1}S_{2}S_{3}$ и $M_{1}M_{2}M_{3}$, должны пересечься в одной точке — центре гомотетии.

Покажем, например, что прямые $S_{1}S_{2}$ и $A_{1}A_{2}$ параллельны (см. рисунок). При симметрии относительно биссектрисы угла $A_{1}$ точка $S_{1}$ перейдет в $T_{1}$, а $T_{3}$ — в $T_{2}$,Рисунок задачи М778 поэтому дуги $S_{1}T_{3}$ и $T_{1}T_{2}$ вписанной окружности треугольника $A_{1}A_{2}A_{3}$ равны. Аналогично, при симметрии относительно биссектрисы угла $A_{2}$ дуга $T_{1}T_{2}$ перейдет в дугу $T_{3}S_{2}$. Следовательно, дуги $S_{1}T_{3}$ и $T_{3}S_{2}$ равны, и поэтому точки $S_{1}$ и $S_{2}$ находятся на одинаковом расстоянии от прямой $A_{1}A_{2}$, то есть $S_{1}S_{2}$$\parallel$$A_{1}A_{2}$. Аналогично доказывается, что и две другие стороны треугольника $S_{1}S_{2}S_{3}$ параллельны соответствующим сторонам треугольника $A_{1}A_{2}A_{3}$.

А. П. Савин

M699. О полукруге, разрезанном на два криволинейных треугольника, в которые вписаны окружности

Задача из журнала «Квант» (1981 год, 8 выпуск)

Условие

Полукруг с диаметром $AB$ разрезан отрезком $CD$, перпендикулярным $AB,$ на два криволинейных треугольника $ACD$ и $BCD$, в которые вписаны окружности, касающиеся $AB$ в точках $E$ и $F$. Докажите, что а) $|AD| = |AF|$, б) $|DF|$ — биссектриса угла $BDC$, в) величина угла $EDF$ не зависит от выбора точки $C$ на $AB$.

Решение

а) Пусть $O$ — центр данного полукруга. Будем считать, что $|AO| = 1$. Пусть, для определенности, точка $C$ лежит между $B$ и $O$ и $|OC| = a$ (см. рисунок).

Применяя теорему Пифагора к треугольникам $ADC$ и $ODC$, получаем $|AD|^2 — |AC|^2 = |OD|^2 — |OC|^2$, то есть $|AD|^2 =$ $= |AC|^2 + |OD|^2 — |OC|^2$, или $|AD|^2 = (1 + a)^2 + 1 — a^2 =$ $= 2 + 2a$.

Пусть $O_1$ — центр окружности, вписанной в криволинейный треугольник $BDC$, $r$ — её радиус. Из прямоугольного треугольника $OO_1F$ находим $(1 — r)^2 = r^2 + (a + r)^2$, или $(a + r)^2 + 2r = 1$. Поскольку $|AF|^2 = (1 + a + r)^2 = 1 + 2a + 2r + (a + r)^2 = 2 + 2a$, получаем $|AF| = |AD|$. (Аналогично доказывается $|BD| = |BE|$.)

б) Треугольник $ADF$ — равнобедренный, так что $\widehat{AFD} = \widehat{ADF}$. Далее, $\widehat{AFD} = \widehat{BDF} + \widehat{DBF}$, $\widehat{ADF} = \widehat{ADC} + \widehat{CDF}$ и $\widehat{ADC} = $ $= \widehat{DBF}$; поэтому $\widehat{CDF} = \widehat{BDF}.$

в) из решения пункта б) следует, что $\widehat{EDF} = \widehat{EDC} + \widehat{CDF} = $ $ = \displaystyle{1\over 2}\widehat{ADB} = \displaystyle{\pi\over 4}$.

В.Сендеров

M1763. Окружность вписанная в треугольник

Задача из журнала «Квант» (2001 год, 1 выпуск)

Условие

Пусть $AH_{1}$, $BH_{2}$, $CH_{3}$ — высоты остроугольного треугольника $ABC$. Окружность, вписанная в треугольник $ABC$, касается сторон $BC$, $CA$, $AB$ в точках $T_{1}$, $T_{3}$,$T_{3}$ соответственно. Прямые $l_{1}$, $l_{2}$, $l_{3}$ являются образами прямых $H_{2}H_{3}$, $H_{3}H_{1}$, $H_{1}H_{2}$ при симметрии относительно прямых $T_{2}T_{3}$, $T_{3}T_{1}$, $T_{1}T_{2}$ соответственно.

Докажите, что прямые $l_{1}$, $l_{2}$, $l_{3}$ образуют треугольник с вершинами на окружности, вписанной в треугольник $ABC$.

Решение

  1. Будем обозначать через $\measuredangle \left (l, m\right )$ направленный угол между прямыми $l$ и $m.$
    Пусть $\measuredangle \left (AC,AB\right ) = \alpha$, $\measuredangle \left (AB,BC\right ) = \beta$, $\measuredangle \left (BC,CA\right ) = \gamma$, тогда (см.рисунок)
    $\measuredangle \left (H_{1}H_{2},AC\right ) = -\beta,$ так как $\Delta H_{1}CH_{2} \sim \Delta ABC $, $\measuredangle \left (T_{1}T_{2}, AC\right ) = \frac{\displaystyle -\alpha -\beta }{\displaystyle 2},$ так как $ CT_{1} = CT_{2},$ значит, $\measuredangle \left (H_{1}H_{2}, T_{1}T_{2}\right ) = \frac{\displaystyle \alpha — \beta }{\displaystyle 2}$.
  2. Рассмотрим гомотетию с отрицательным коэффициентом, переводящую описанную окружность треугольника $ABC$ во вписанную. Пусть $K_{1}K_{2}K_{3}$ — образ $ ABC$ при этой гомотетии, тогда стороны треугольника $K_{1}K_{2}K_{3}$ параллельны сторонам треугольника $ABC,$ значит, $$\measuredangle \left (K_{1}K_{2}, T_{1}T_{2}\right ) = \measuredangle \left (AB, T_{1}T_{2}\right )= \measuredangle \left (AB, AC\right ) + \measuredangle \left (AC, T_{1}T_{2}\right )= $$
    $$ = -\alpha +\frac{\displaystyle \alpha +\beta }{\displaystyle 2} = \frac{\displaystyle \beta -\alpha }{\displaystyle 2}= -\measuredangle \left (H_{1}H_{2}, T_{1}T_{2}\right ).$$Проведем $AL_{1}$, $BL_{2}$, $CL_{3}$- биссектрисы треугольника $ABC$, тогда $CL_{3} \perp T_{1}T_{2}$ и $\measuredangle \left (K_{1}K_{2},CL_{3}\right ) = -\measuredangle \left (H_{1}H_{2},CL_{3}\right )$.
    Пусть $ CL_{3}= l_{C}, P, Q, S $ — точки пересечения $CL_{3}$ с $ K_{1}K_{2}$, $ T_{1}T_{2}$ и $ H_{1}H_{2}$ соответственно, $ I $ — центр вписанной окружности треугольника $ABC$, $r$ — ее радиус. Вычислим длины отрезков $ CP,$ $CQ $ и $CS.$
  3. $ \Delta H_{1}CH_{2} \sim \Delta ABC \Rightarrow CS = l_{C} \cdot \frac{\displaystyle CH_{1}}{\displaystyle CA} = l_{C} \cos \gamma$, но $$IL_{3}= \frac{\displaystyle r}{\displaystyle \cos\frac{\displaystyle \beta — \alpha }{\displaystyle 2}}, т.к. \angle L_{3}IT_{3}= \frac{\displaystyle \left | \beta -\alpha \right |}{\displaystyle 2},$$ значит, $$ l_{C}= r\left ( \frac{\displaystyle 1}{\displaystyle \sin \frac{\displaystyle \gamma }{\displaystyle 2}} + \frac{\displaystyle 1}{\displaystyle \cos \frac{\displaystyle \beta -\alpha }{\displaystyle 2}} \right ),$$ тогда $$ CS=\left ( \frac{\displaystyle \cos \gamma}{\sin \frac{\displaystyle \gamma }{\displaystyle 2}} + \frac{\displaystyle \cos \gamma}{\displaystyle \cos \frac{\displaystyle \beta -\alpha }{\displaystyle 2}} \right ).$$
  4. $ \angle T_{1}CI= \frac{\displaystyle \gamma }{\displaystyle 2}$, следовательно, $\angle T_{1}IQ=\frac{\displaystyle \pi}{\displaystyle 2}- \frac{\displaystyle \gamma }{\displaystyle 2},$ значит, $$T_{1}Q=r\sin \left ( \frac{\displaystyle \pi }{\displaystyle 2}- \frac{\displaystyle \gamma }{\displaystyle 2}\right ) = r\cos \frac{\displaystyle \gamma }{\displaystyle 2},$$ откуда $$ CQ= T_{1}Q \text{ctg}\:\frac{\displaystyle \gamma }{\displaystyle 2} = r\frac{\displaystyle \cos^{2}\frac{\displaystyle \gamma }{\displaystyle 2}}{\displaystyle \sin \frac{\displaystyle \gamma }{\displaystyle 2}}$$
  5. Пусть $IX \perp K_{1}K_{2}, X\in K_{1}K_{2}$. Тогда $$\angle K_{1}IK_{2} = 2\angle K_{1}K_{3}K_{2} = 2 \gamma \Rightarrow \angle K_{1}IX = \gamma,$$ стало быть, $$IX=r \cos \gamma.$$ Но $$ \angle XIP = \angle L_{3}IT_{3} = \frac{\displaystyle \left | \beta -\alpha \right |}{\displaystyle 2},$$ поэтому $$IP=\frac{\displaystyle r\cos \gamma }{\displaystyle \cos \frac{\displaystyle \beta -\alpha }{\displaystyle 2}},$$ и из равенства $$CI=\frac{\displaystyle r}{\displaystyle \sin \frac{\displaystyle \gamma}{\displaystyle 2}}$$ следует, что $$CP= \frac{\displaystyle r}{\displaystyle \sin \frac{\displaystyle \gamma }{\displaystyle 2}} — \frac{\displaystyle r\cos \gamma }{\displaystyle \cos \frac{\displaystyle \beta -\alpha }{\displaystyle 2}}.$$
  6. Докажем, что $ CP + CS = 2CQ$, т.е. что $ Q$ — середина отрезка $SP$.Имеем: $$CP + CS = \frac{\displaystyle r}{\displaystyle \sin \frac{\displaystyle \gamma }{\displaystyle 2}} — \frac{\displaystyle r\cos \gamma }{\displaystyle \cos \frac{\displaystyle \beta -\alpha }{\displaystyle 2}} + \frac{\displaystyle r\cos \gamma }{\displaystyle \sin \frac{\displaystyle \gamma }{\displaystyle 2}} + \frac{\displaystyle r\cos \alpha }{\displaystyle \cos \frac{\displaystyle \beta -\alpha }{\displaystyle 2}} = $$ $$=\frac{\displaystyle r}{\displaystyle \sin \frac{\displaystyle \gamma }{\displaystyle 2}}\left ( 1+ \cos \gamma \right ) = \frac{\displaystyle 2r\cos \alpha^{2}\frac{\displaystyle \gamma }{\displaystyle 2}}{\displaystyle \sin \frac{\displaystyle \gamma }{\displaystyle 2}} = 2CQ.$$
    Значит, $T_{1}T_{2}$- серединный перпендикуляр к отрезку $SP$. Продлим $K_{1}K_{2}$ и $H_{1}H_{2}$ до пересечения в точке $Y$. Мы доказали, что $\measuredangle \left ( H_{1}H_{2}, SP \right ) = \measuredangle \left ( SP,K_{1}K_{2} \right ),$ значит, треугольник $SYP$- равнобедренный, поэтому прямые $H_{1}H_{2}$ и $K_{1}K_{2}$ симметричны относительно $YQ$, т.е. относительно $T_{1}T_{2}$.Это означает, что $K_{1}K_{2}$ совпадает с прямой $l_{3}$. Аналогично, $l_{1}$ и $l_{2}$ — это прямые $K_{2}K_{3}$ и $K_{1}K_{3}$, следовательно, треугольник, составленный из прямых $l_{1},l_{2},l_{3}$ — это $K_{1}K_{2}K_{3}$. Его вершины лежат на вписанной в треугольник $ABC$ окружности, что и требовалось доказать.

Т.Емельянова, А.Гайфуллин, Д.Терешин

М1304. Задача о связи вписанной и описанной окружностей в треугольнике

Задача из журнала «Квант» (1991)

Условие

Пусть [latex]I[/latex] — центр вписанной окружности в треугольнике [latex]ABC[/latex], [latex]R[/latex] — радиус описанной окружности. Докажите, что $${R}^{3}\geq IA\cdot IB\cdot IC.$$

Иллюстрация к задаче

kvant (2)

Решение

Пусть [latex]\alpha, \beta, \gamma[/latex] — углы треугольника, [latex]x, y, z[/latex] — отрезки, на которые точки касания с вписанной окружностью разбивают его стороны. Поскольку радиус [latex]R[/latex] равен половине отношения стороны к синусу к синусу противоположного угла (теорема синусов), а отрезки [latex]IA, IB, IC[/latex] выражаются через [latex]x, y, z[/latex] и углы из прямоугольных треугольников , требуемое неравенство можно переписать так: $\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{8\sin\alpha\cdot\sin\beta\cdot\sin\gamma}\geq$$\frac{xyz}{\cos\left(\alpha/2\right)\cos\left(\beta/2\right)\cos\left(\gamma/2\right)}$ или $\left(x+y\right)\left(y+z\right)\left(z+x\right)\geq$$64xyz\sin\left(\alpha/2\right)\sin\left(\beta/2\right)\sin\left(\gamma/2\right)$

С другой стороны, пользуясь теоремой косинусов, получаем $\sin^2\left(\alpha/2\right)=$$\frac{1}{2}\left(1-\frac{b^2+c^2-a^2}{2bc}\right)=$$\frac{\left(p-b\right)\left(p-c\right)}{bc}=$$\frac{yz}{\left(x+y\right)\left(x+z\right)}.$

Аналогично, $$\sin^2\left(\beta/2\right)=\frac{xz}{\left(x+y\right)\left(y+z\right)},$$ $$\sin^2\left(\beta/2\right)=\frac{xy}{\left(x+z\right)\left(y+z\right)},$$ тогда $\sin\left(\alpha/2\right)\sin\left(\beta/2\right)\sin\left(\gamma/2\right)=$$\frac{xyz}{\left(x+y\right)\left(x+z\right)\left(y+z\right)}$ и неравенство имеет вид $${\left(x+y\right)\left(x+z\right)\left(y+z\right)}\geq8xyz,$$ для доказательства которого достаточно перемножить три очевидных неравенства:

  1. $x+y\geq2\sqrt{xy}.$
  2. $y+z\geq2\sqrt{yz}.$
  3. $x+z\geq\sqrt{xz}.$

Еще одно решение задачи можно получить, используя равенства:

  • $IA=\frac{r}{\sin\left(\alpha/2\right)}.$
  • $IB=\frac{r}{\sin\left(\beta/2\right)}.$
  • $IC=\frac{r}{\sin\left(\gamma/2\right)}.$

$$r=4R\sin\left(\alpha/2\right)\sin\left(\beta/2\right)\sin\left(\gamma/2\right).$$ Имеем: $R^2\geq4r^2,$ т. е. $R\geq2r.$

Это хорошо известное неравенство можно доказать чисто геометрически (например, опираясь на то, что радиус окружности, проходящей через середины сторон треугольника [latex]ABC[/latex], равный [latex]R/2[/latex], не меньше [latex]r[/latex]).

Н. Васильев. В. Сендеров. А.Соловьев