Задача о 19-граннике

Задача из журнала «Квант» (1970, №7)

Условие

Около сферы радиуса $10$ описан некоторый $19$-гранник. Доказать, что на его поверхности найдутся две точки, расстояние между которыми больше $21$.

kvantTasc

Решение

Первое решение

Предположим противное, то есть, что расстояние между любыми двумя точками поверхности нашего $19$-гранника не больше $21$. Тогда этот многогранник лежит внутри сферы радиуса $11$, концентричной сфере радиуса $10$, а каждая его грань лежит между сферами. Поэтому площадь каждой грани не слишком велика, а именно, не превосходит площади круга, радиус которого равен $\sqrt{21}$. В нашем многограннике $19$ граней, поэтому площадь $S$ его поверхности не превосходит $19\cdot(\pi\cdot(\sqrt{21})^2) = \pi(20^2 -1^2)=399\pi$. Но многогранник описан около сферы радиуса $10$. Отсюда площадь его поверхности больше площади поверхности этой сферы $4\pi10^2$*. Итак, с одной стороны, $ S > 399\pi$, с другой стороны, $ S < 400\pi$. Полученное противоречие и решает задачу.

В этом (нестрогом) решении мы пропустили доказательства трёх утверждений, которые начинаются с трёх выделенных выше курсивом слов: тогда, поэтому, отсюда. Мы оставляем читателю эти простые доказательства, но хотим предупредить, что хотя третье утверждение легко доказывается для выпуклого многогранника с помощью сравнения его объёма с объёмом сферы**, тем не менее интуитивно ясное и правильное утверждение о том, что наш многогранник выпуклый, трудно доказать строго, так как само строгое определение многогранника весьма сложно. (Загляните, например, в книгу И. Лакатоса «Доказательства и опровержения» М., «Наука», 1967).

Второе решение

Поставим более общий вопрос: какое наименьшее число граней может иметь многогранник, описанный около сферы радиуса $r$ и целиком лежащий в концентрической с ней сфере радиуса $R > r$. (Вот житейская ситуация, которая подсказала автору эту задачу: каким наименьшим числом прямолинейных взмахов ножа можно срезать верхний слой кожуры апельсина, не срезав при этом ни одного куска сердцевины? Очевидно, что после срезания всего верхнего слоя кожуры остаток будет многогранником, так как на его поверхности не будет ни одного закругленного участка, так что этот вопрос эквивалентен предыдущему.)

Мы не знаем точного ответа на этот более общий вопрос, но докажем для числа граней некоторое неравенство, которое при $r = 10, R = 11$ показывает, что $N < 22$. Тем самым мы докажем, что если в условии задачи вместо $19$-гранника взять $22$-гранник, то утверждение задачи по-прежнему останется справедливым.

Итак, пусть $N$-гранник описан около сферы радиуса $r$ и целиком лежит внутри сферы радиуса $R$. Рассмотрим какую-нибудь его грань.

Проходящая через неё плоскость отрезает от сферы шапочку (сегментную поверхность) высоты $R — r$. Ясно, что если построить шапочки для всех граней нашего многогранника, то их объединение покроет всю внешнюю сферу. Каждая из $N$ шапочек есть сегментная поверхность высоты $R — r$, и, следовательно, имеет площадь $2\pi R(R — r)$. Сумма площадей всех шапочек больше площади сферы. Поэтому $N\cdot 2\pi R(R — r) > 4\pi R^2$, отсюда $N > {\frac{2R}{R-r}}$, в частности, при $R = 11, r = 10$ получаем $N > 22$.

Интересно, что по любому набору шапочек, целиком покрывающих внешнюю сферу, можно построить многогранник, описанный около внутренней сферы. (Докажите!) Поэтому наш вопрос про минимальное число граней полностью эквивалентен следующему вопросу. Каково минимальное число $N = N(h)$ шапочек высоты h, целиком покрывающих сферу радиуса $1$? (В исходной задаче $h = {\frac{1}{11}}$.)

Очевидно, что $N(h) > {\frac{2}{h}}$, но это неравенство отражает просто тот факт, что сумма площадей шапочек больше площади сферы, в то время как интуитивно ясно, что при $h > 1$ шапочки должны довольно сильно перекрываться. И действительно, можно доказать, что при достаточно малых $h$

$ N(h) > 1,2\frac{2}{h}$.

Попробуйте сами доказать, например, что при $h < 1$

$N(h) > 1,001\frac{2}{h}$

А. Г. Кушниренко

* Напомним, что для шара радиуса $R$ объем равен $\frac{4}{3}\pi R^3$, площадь сегментной поверхности с высотой $h$ равна $2\pi Rh$ и, в частности, площадь сферы равна $4\pi R^2$

** Действительно, объем многоугольника равен $\frac{RS}{3}$, где $R$ — радиус вписанной сферы, а $S$ — площадь его поверхности.

M1421

Задача о неравенстве выпуклого четырехугольника

Условие

  1. В выпуклый четырехугольник $latex ABCD$, у которого углы при вершинах $latex B $ и $latex D $ — прямые, вписан четырехугольник с периметром $latex P $ (его вершины лежат по одной на сторонах четырехугольника $latex ABCD$). Докажите неравенство $latex P \geqslant 2BD$
  2. В каких случаях это неравенство превращается в равенство?

Решение

  1. Пусть $latex EFKL $ — четырехугольник, вписанный в $latex ABCD $ (см рис.). Обозначим через $latex M $ и $latex N $ середины отрезков $latex EF $ и $latex KL $ соответсвенно. Мы докажем неравенство задачи в более общем случае : $latex \angle B \geq \frac{\pi}{2} $ , $latex \angle D \geq \frac{\pi}{2}$.
    При этом

    $latex BM \leq \frac{1}{2}EF , DN \leq\frac{1}{2}KL $
    (*)

    Далее, так как $latex \vec{MN }=\frac{1}{2}\left ( \vec{EK} +\vec{FL}\right ) $, то

    $latex \left | \vec{MN} \right | \leq \frac{1}{2}\left ( EK+FL \right )$.
    (**)

    Поскольку $latex BM+MN+ND+ND \geq BD. $
    получаем из (*), (**) неравенство задачи.

  2. Равенство (*) имеет место, если $latex \angle B=\frac{\pi}{2}, \angle D=\frac{\pi}{2}$.
    Неравенство (**) переходит в равенство, если $latex EK||FK||MN. $ Кроме этого, в случае равенства точки $latex B,M,N,D $ лежат на одной прямой.
    Из вышесказанного получаем следующий способ построения всех четырехугольников, для которых неравенство задачи превращается в равенство.
    Пусть $latex O — $ точка пересечения $latex AC $ и $latex BD, AO \leq OC. $ Проведем через произвольную точку отрезка $latex AO $ прямую $latex EK, $ параллельную $latex BD\left ( E\in AB, K \in AD \right ) $. Симметрично отобразив прямую EK относительно $latex BD, $ получим противоположную сторону $latex FL $ четырехугольника.

Г. Нерсисян