Теорема об аддитивной группе многочленов

Теорема. Пусть $P\left[x\right]$ — множество многочленов над полем от переменной $x,$ $+$ — операция сложения многочленов. Тогда $\left( P\left[x\right],+ \right)$ — абелева группа.

Очевидно, $P\left[x\right]\neq \varnothing,$ $+$ — БАО. Проверим выполнение аксиом абелевой группы:

  1. Ассоциативность операции: $$\forall u\left(x\right),v\left(x\right),w\left(x\right) \in P\left[x\right]: \left(u\left(x\right)+v\left(x\right)\right)+w\left(x\right)=u\left(x\right)+\left(v\left(x\right)+w\left(x\right)\right).$$ Как известно, операция сложения многочленов обладает ассоциативностью.
  2. Коммутативность операции: $$\forall u\left(x\right),v\left(x\right) \in P\left[x\right]:u\left(x\right)+v\left(x\right)=v\left(x\right)+u\left(x\right).$$ Сложение многочленов также обладает и коммутативностью.
  3. Покажем что существует нейтральный элемент по сложению, а именно: $$\exists e \in P\left[x\right]\; \forall u\left(x\right) \in P\left[x\right]: u\left(x\right)+e=e+u\left(x\right)=u\left(x\right).$$ Таким элементом выступает число $0,$ которое можно рассматривать как одночлен, или как многочлен с коэффициентами равными нулю. Из определения сложения многочленов, сложение с ним не изменит коэффициенты исходного многочлена, т.к. $0$ является нейтральным элементом для сложения чисел.
  4. Наконец, покажем существование противоположного элемента: $$\forall u\left(x\right) \in P\left[x\right]\; \exists -u\left(x\right)\in P\left[x\right]: u\left(x\right)+\left(-u\left(x\right)\right)=-u\left(x\right)+u\left(x\right)=e=0.$$ Получить такой элемент для любого многочлена можно просто заменив все его коэффициенты на противоположные (простыми словами — поменяв их знаки). Суммой таких многочленов, в силу противоположности их коэффициентов как чисел, будет многочлен, все коэффициенты которого равны нулю, или просто $0.$

Итак, все аксиомы выполняются, следовательно $\left( P\left[x\right],+ \right)$ — абелева группа.

Примеры решения задач

Читателю предлагается решить эти примеры и сравнить своё решение с приведённым.

  1. Является ли $\left( P^3\left[x\right],+ \right),$ где $P^3\left[x\right]$ — множество многочленов третьей степени, абелевой группой?
    Решение

    Очевидно, операция сложения многочленов сохраняет все свои свойства на этом множестве, а нейтральный и противоположный элементы ему принадлежат $\Rightarrow$ все аксиомы выполняются. Также, $+$ остается БАО, а $P^3\left[x\right]\neq \varnothing.$ Значит, ответ положительный.

  2. Является ли $\left( P^3\left[x\right],\cdot \right),$ где $P^3\left[x\right]$ — множество многочленов третьей степени, а $\cdot$ — операция умножения многочленов, абелевой группой?
    Решение

    Аналогично первому примеру, $P^3\left[x\right]\neq \varnothing.$ Однако, в случае умножения, произведением двух многочленов $3$-й степени будет многочлен $6$-й степени (по лемме о степени произведения), что выходит за границы рассматриваемого множества. Значит, $\left( P^3\left[x\right],\cdot \right)$ — не абелева группа.

Смотрите также

  1. А.Г. Курош Курс высшей алгебры. — Издание девятое. — Москва: Наука, 1968. — 431с. (c. 132-134)
  2. К.Д. Фадеев Лекции по алгебре. — Москва: Наука, 1984. — 416с. (c. 54-55)
  3. А.И. Кострикин Введение в алгебру. Основы алгебры. — Москва: Физматлит, 1994. -320с. (с. 211-212)
  4. Белозёров Г.С. Конспект лекций.

Аддитивная группа многочленов

Этот тест призван проверить Ваши знания по теме «Аддитивная группа многочленов».

Критерии первообразности

Критерии первообразности

[latex] U_n[/latex] — циклическая группа корней [latex] n[/latex]-й степени из единицы. Образующий элемент группы [latex] U_n[/latex] называется первообразным корнем [latex] n[/latex]-й степени из единицы.

Теорема 1 (Первый критерий первообразности)

Корень [latex] n[/latex]-й степени из единицы будет первообразным корнем [latex] n[/latex]-й степени из единицы [latex] \Leftrightarrow[/latex] не является корнем из единицы никакой степени [latex] <n[/latex].

Доказательство

Необходимость:
[latex] E[/latex] – первообразный корень степени [latex] n[/latex] из единицы .
[latex] \forall m \in \mathbb{N}[/latex], [latex] m < n[/latex], [latex] E^m \ne 1[/latex];
[latex] U_n=[/latex] [latex]\{1, E, E^2, …, E^{n-1}\}[/latex].
От противного. Пусть [latex] E^m= 1[/latex], [latex] m < n[/latex], тогда [latex] E[/latex] образует группу [latex] {U}'_n[/latex] (или [latex] U_m[/latex]) = [latex]\{1, E, E^2, …, E^{m-1}, E^m\}[/latex] = [latex]\{1, E, E^2, …, E^{m-1}\}[/latex], где [latex] E^m= 1[/latex] и [latex] {U}'_n= m[/latex], но [latex] m < n \Rightarrow [/latex] [latex] {U}'_n \ne U_n \Rightarrow [/latex] [latex] E[/latex]- не образующий элемент [latex] U_n[/latex]. Получаем, что [latex] \forall m \in \mathbb{N}[/latex], [latex] m < n[/latex], [latex] E^m \ne 1[/latex].
Достаточность:
[latex] \forall m \in \mathbb{N}[/latex], [latex] m < n[/latex], [latex] E^m \ne 1 \Rightarrow [/latex]
[latex] E[/latex] — первообразный корень из единицы степени [latex]n[/latex].
От противного. Пусть [latex] E[/latex]-не является первообразным корнем [latex] n[/latex]-й степени из единицы [latex] \Rightarrow E [/latex] не образует группу [latex] U_n \Rightarrow [/latex]
[latex] U^E_n= {E^0, E^1, E^2,…< E^{n-1} } \ne U_n \Rightarrow U^E_n \in U_n \Rightarrow \exists k, 1 \leqslant k \leqslant n-1,[/latex] что [latex] E^{k-1}=1[/latex], но [latex] 0 \leqslant k+1 < n-1 [/latex], [latex] m= k-1 \Rightarrow[/latex] [latex] \exists m \in \mathbb{N}[/latex], [latex] m < n[/latex], [latex] E^m = 1 \Rightarrow [/latex] [latex] E[/latex] – первообразный корень степени [latex] n[/latex] из [latex] 1[/latex].

Лемма

Если [latex] E[/latex] — первообразный корень степени [latex] n[/latex] из единицы, то
[latex] E^m= 1 \Leftrightarrow m \vdots n[/latex].

Доказательство

Необходимость:
Найдём [latex] m= nq+r[/latex], [latex] 0 \leq r \leq n-1[/latex];
[latex] 1= E^m= E^{nq+n}= E^{nr}E^r= (E^n)^qE^r= 1^qE^r= E^r[/latex].
Если [latex] r \in \mathbb{N}[/latex], то получим противоречие с первым критерием [latex] r=0 \Rightarrow m \vdots n[/latex].
Достаточность: [latex] m \vdots n \Rightarrow m=nq[/latex];
[latex] E^m= E^{nq}= (E^n)^q= 1^q=1[/latex].

Теорема 2 (Второй критерий первообразности)

Пусть [latex] E [/latex] — первообразный корень степени [latex] n[/latex] из единицы, тогда [latex] E^k (k \in \mathbb{N})[/latex] является первообразным корнем степени [latex] n[/latex] из единицы [latex] \Leftrightarrow (n,k)=1[/latex].

Доказательство

[latex](n,k)= d[/latex]; [latex] n= n,d[/latex]; [latex] k= k,d[/latex]; [latex](n_1, k_1)=1[/latex].
Необходимость: [latex] E[/latex], [latex] E^n[/latex] — корни степени [latex] n[/latex] из единицы.
[latex] (n,k)=1 [/latex]
От противного. [latex] (n,k)=d > 1 \Rightarrow n_1 < n [/latex];
[latex](E^k)^{n_1} = (E^{k_1d})^{n_1}= E^{k_1dn_1}= E^{k_1(nd_1)}= E^{k_1n}= (E^n)^{k_1}= 1^{k_1}=1 \Rightarrow d=1[/latex] противоречие.
Достаточность: [latex] E [/latex] — первообразный корень степени [latex] n [/latex] из единицы;
[latex] (n,k)=1 [/latex];
[latex] E^k [/latex] — первообразный корень степени [latex] n[/latex] из единицы.
От противного. Пусть [latex] E^k [/latex] – не является первообразным корнем степени [latex] n[/latex] из единицы, тогда по первому критерию первообразности: [latex] \exists m \in N[/latex], [latex] m < n[/latex], [latex](E^k)^m= 1[/latex];
[latex] E^{km}=1 \Rightarrow [/latex] по лемме [latex] km \vdots n \Rightarrow m \vdots n [/latex], но [latex] m < n [/latex] – противоречие.

ПРИМЕРЫ

Найти все первообразные корни группы [latex]U_{12}[/latex], пользуясь вторым критерием первообразности.

Спойлер

Определяем с какими индексами будут корни и потом по формуле [latex](E_k= \cos\frac{2\pi k}{n} + i \sin \frac{2\pi k}{n})[/latex] находим эти самые первообразные корни.
[latex]U_{12}[/latex], [latex] (k, 12) = 1[/latex], [latex] k= 1, 5, 7, 11[/latex];
[latex]E_1, E_5, E_7, E_{11}[/latex]
[latex] E_1= \cos\frac{\pi}{6} + i\sin\frac{\pi}{6}[/latex];
[latex] E_5= \cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}[/latex];
[latex] E_7= \cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}[/latex];
[latex] E_{11}= \cos\frac{11\pi}{6} + i\sin\frac{11\pi}{6}[/latex];

[свернуть]

Даны корни из единицы [latex]E_1 = i[/latex], [latex] E_3 = -i[/latex]. Построить группу [latex] U_4[/latex].

Спойлер

Так как группа [latex] U_4[/latex] циклическая, то у нее есть образующий элемент x, этот элемент в свою очередь будет первообразным корнем и тогда, так как известные нам корни имеют индексы взаимно простые с [latex] 1[/latex] (по второму критерию) получим, что они и есть первообразными корнями. Теперь один из них возводим в степени [latex] 0, 1, 2, 3[/latex] получим [latex] 4[/latex] числа, они и будут составлять искомую группу:
[latex] U_4=[/latex] [latex]\{1, i, -1, -i\}[/latex].

[свернуть]

Тест по вышеизложенному материалу

Источники

  1. Белозеров Г.С. Конспект лекций.
  2. Курош А.Г. Курс линейной алгебры. Издание тринадцатое, 2004. Стр.123-128.
  3. Фаддеев Д.К. Лекции по алгебре. Наука, 1984. Стр.43-49.

Простейшие задачи на определение структур группы, кольца, поля

Группа

Множество $G$ с бинарной алгебраической операцией $\ast$ называется группой, если выполняются следующие условия:

  1. Операция $\ast$ в $G$ ассоциативна: $a\ast (b\ast c)=(a\ast b)\ast c \forall a,b,c\in G$;
  2. В $G$ существует нейтральный элемент $\theta :a\ast\theta=\theta\ast a=a \forall a\in G;$
  3. Для каждого элемента $a\in G$ существует обратный ему элемент $a^{-1}\in G: a\ast a^{-1}=a^{-1}\ast a=\theta $.

Если операция коммутативна, то группа называется коммутативной, или абелевой. В противном случае группа называется некоммутативной.

Задача

Доказать, что множество рациональных чисел R является абелевой группой относительно операции сложения.

Спойлер

  1. Ассоциативность очевидна
    $\forall a,b,c\in R a+(b+c)=(a+b)+c$
  2. Нейтральным элементом является число 0.
    $ 0+a=a+0=a \forall a\in r$
  3. Для каждого элемента множества R существует обратные ему элемент, также принадлежащий множеству $R$ .
    $ a^{-1}=-a$
    $\forall a\in R a+(-a)=(-a)+a=\theta=0$

$\Rightarrow R$ является группой относительно операции сложения.
Проверим коммутативность:
$ \forall a,b\in R a+b=b+a$ — верно.
$\Rightarrow$Группа абелева.
Что и требовалось доказать

[свернуть]

Кольцо

Множество $K$ , на котором заданы две операции — сложение (+) и умножение $\cdot$, называется кольцом, если выполняются следующие условия:

  1. Относительно операции сложения множество $K$ — коммутативная группа, т.е:
    1. Операция сложения коммутативна: $a+b=b+a \forall a,b\in K;$
    2. Операция сложения ассоциативна:$ a+(b+c)=(a+b)+c \forall a,b,c\in K;$
    3. Существует нулевой элемент $\theta: a+\theta =\theta +a=a \forall a\in K;$
    4. для каждого элемента существует противоположный ему элемент $(-a)\in K: a+(-a)=(-a)+a=\theta;$
  2. Операция умножения в множестве $K$ ассоциативна:
    $a\cdot (b\cdot c)=(a\cdot b)\cdot c$$ \forall a,b,c\in K$
  3. Операции сложения и умножения связаны законами дистрибутивности:
    $(a+b)\cdot c=a\cdot c+b\cdot c c\cdot (a+b)=c\cdot a+c\cdot b \forall a,b,c\in K$

Если операция умножения коммутативна:$a\cdot b=b\cdot a$, то кольцо называется коммутативным, в противном случае кольцо называется некоммутативным. Если для операции умножения существует единичный элемент $e: a\cdot e=e\cdot a=a$, то говорят, что кольцо — есть кольцо с единицей.

Задача

Проверить яляется ли кольцом множество комплексных чисел.

Спойлер

    1. Коммутативность сложения
      $ (a+bi)+(c+di)=(a+c)+(b+d)i=(c+a)+(d+b)i=(c+di)+(a+bi)$ $ \forall (a+bi),(c+di)\in C$
    2. Ассоциативность сложения
      $ ((a+bi)+(c+di))+(e+fi)=((a+c)+(b+d)i)+(e+fi)=(a+c+e)+(b+d+f)i=(a+bi)+((c+e)+(d+f)i)=(a+bi)+((c+di)+(e+fi))$ $ \forall (a+bi),(c+di),(e+fi)\in C$
    3. Существование нейтрального элемента
      $ \forall (a+bi)\in C (a+bi)+(0+0i)=(a+bi)$
    4. Существование обратного элемента
      $ \forall (a+bi)\in C \exists (-a-bi)\in C:
      (a+bi)+(-a-bi)=(0+0i)$
  1. Ассоциативность умножения
    $ \forall (a+bi),(c+di),(e+fi)\in C
    (a+bi)\cdot ((c+di)\cdot (e+fi))=(a+bi)\cdot ((ce-df)+(cf+de)i)=(a\cdot (ce-df)-b\cdot (cf+de))+(a\cdot (cf+de)+b\cdot (ce-df))i)=(ace-adf-bcf-bde)+(acf+ade+bce-bdf)i=(e\cdot (ac-bd)-f\cdot (ad+bc))+(e\cdot (ad+bc)+ f\cdot (ac-bd))=((a+bi)\cdot (c+di))\cdot (e+fi)$
  2. Дистрибутивность сложения и умножения
    $ \forall (a+bi),(c+di),(e+fi)\in C
    ((a+bi)+(c+di))\cdot (e+fi)=((a+c)+(b+d)i)\cdot (e+fi)=((a+c)e-(b+d)f)+((a+c)f+(b+d)e)i)=(ae+ce-bf-df)+(af+cf+be+de)i=(ae-bf)+(be+af)i+(ce-df)+(cf+de)i=(a+bi)\cdot (e+fi)+(c+di)\cdot (e+fi)$

Множество комплексных чисел является кольцом

[свернуть]

Поле

Полем называется кольцо $P$, обладающее следующими свойствами:
1. Обратимость умножения. $\forall a,b\in P$, где $a\neq 0$, уравнение $ax = b$ имеет (по крайней мере одно) решение, т. е. существует элемент такой, что $aq = b$.

2. $P$ содержит по крайней мере один элемент, отличный от нуля.

Источники

Структуры и подструктуры

Тест на тему «Простейшие задачи на определение структур группы, кольца, поля. Подструктуры.Циклическая группа. Симметрическая группа.». Прочтите все четыре статьи, прежде чем проходить тест.

Таблица лучших: Структуры и подструктуры

максимум из 7 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Теорема о представлении элементов конечной циклической группы

Определение циклической группы

Пусть дана группа [latex](G, \cdot)[/latex]. Если [latex]\exists g_{0}\in G [/latex] такое, что [latex]\forall g\in G[/latex], [latex]\exists n\in \mathbb Z[/latex]: [latex]g=g_{0}^n[/latex], то [latex](G, \cdot)[/latex] называется циклической группой  и пишут [latex]G=<g_{0}>_{n}[/latex], где [latex]g_{0}[/latex] образующая и количество элементов, порядок группы, [latex]|G|=n[/latex]. Циклическая группа [latex]G[/latex] называется конечной, если она имеет конечное число элементов, в противном случае группа называется бесконечной.

Теорема
Пусть дана циклическая группа [latex](G, \cdot)[/latex] и [latex]G=<g_{0}>_{n}[/latex], тогда эта группа имеет следующий вид: [latex]G=\{ g_{0}^0=1, g_{0}, g_{0}^2, g_{0}^3, \dots, g_{0}^{n-1}\}[/latex].

Доказательство
Для доказательства покажем что все элементы нашей группы различные, иначе количество элементов в группе будет меньше её порядка.
Пусть [latex]\exists i<j[/latex] такие, что [latex] 0\leq i<j \leq{n-1}[/latex] и [latex] g_{0}^{i} = g_{0}^{j}\Rightarrow[/latex] [latex]g_{0}^{j-i} = 1[/latex], тогда [latex]\exists m\in \mathbb Z : m=j-i[/latex], следовательно [latex]1\leq m\leq{n-1}[/latex] и [latex]g_{0}^m=1.[/latex] Отсюда [latex]\forall g\in G, g=g_{0}^t, t\in \mathbb Z[/latex] и [latex]t=mq+r, 0\leq r<m,[/latex] тогда [latex]g_{0}^t=g_{0}^{mq+r}=[/latex][latex](g_{0}^m)^q\cdot g_{0}^r\Rightarrow[/latex] [latex]g_{0}^t =1\cdot g_{0}^r=g_{0}^r[/latex], это значит что все элементы группы будут равны [latex]g_{0}^r[/latex], где [latex]\forall t\in \mathbb Z[/latex] существует свой [latex]r[/latex],но [latex]0\leq r<m[/latex], а [latex]1\leq m\leq{n-1}[/latex] мы получаем противоречие, поскольку мы не получим всю группу.

Таким образом [latex]G=\{ g_{0}^0=1, g_{0}, g_{0}^2, g_{0}^3, \dots, g_{0}^{n-1}\}[/latex].

Примеры циклических групп
[latex]A=\{1, 2, 2^2, 2^3, 2^4, 2^5, 2^6\}[/latex] — Конечная иклическая группа, поскольку каждый элемент является значением [latex]2^k, 0\leq k\leq 6[/latex], отсюда образующей этой группы является [latex]2[/latex] и [latex]A=<2>_{7}[/latex].

[latex]A=\{1,\frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, \frac{1}{2^4}, \frac{1}{2^5}, \frac{1}{2^6} \}[/latex] — Конечная циклическая группа, каждый элемент является значением [latex](\frac{1}{2})^k, 0\leq k\leq 6[/latex], образующей является [latex]\frac12[/latex] и [latex]A=<\frac12>_{7}[/latex].

Литература

  1. Воеводин В.В. Линейная алгебра. М.: Наука, 1980 с. 24-28.
  2. Фаддеев Д.К. Лекции по алгебре. М.: Наука, 1984 с. 246-248.
  3. Белозёров Г.С. Конспект лекций по линейной алгебре.

 

Теорема о представлении элементов конечной циклической группы

Тест на тему «Теорема о представлении элементов конечной циклической группы»:

Таблица лучших: Теорема о представлении элементов конечной циклической группы

максимум из 8 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Порядок группы

Порядок группы

Пусть [latex]\left(G,*\right)[/latex] — группа, если [latex]G[/latex] — конечное множество, то порядком группы называется число элементов [latex]G[/latex] и обозначается [latex]\left|G \right|[/latex] или [latex]\mathrm{card}[/latex] [latex]G[/latex]. Если [latex]G[/latex] — бесконечно, то порядок бесконечен.

Порядок элемента группы

Пусть [latex]\left(G,*\right)[/latex] — произвольная группа и [latex]a[/latex] — некоторый ее элемент. Имеются две возможности:

  1. Все степени элемента [latex]a[/latex] различны, то есть [latex]m\neq n[/latex] [latex]\Rightarrow[/latex] [latex]a^{m} \neq a^{n}[/latex]. В этом случае говорят, что элемент [latex]a\in G[/latex] имеет бесконечный порядок.
  2. Имеются совпадения [latex]a^{m}=a^{n}[/latex] при [latex]m\neq n[/latex]. Если, например, [latex]m>n[/latex], то [latex]a^{m-n}=e[/latex], то есть существуют положительные степени элемента [latex]a\in G[/latex], равные единичному элементу. Пусть [latex]q\ -[/latex] наименьший положительный показатель, для которого [latex]a^{q}=e.[/latex] Тогда говорят, что [latex]a[/latex] — элемент конечного порядка [latex]q[/latex].

В конечной группе [latex]\left(G,*\right)[/latex] все элементы будут конечного порядка.

Порядок группы с циклическими подгруппами

Пусть [latex]\left(G,*\right)[/latex] — данная группа. Любой ее элемент порождает некоторую циклическую подгруппу. Если [latex]\left(G,*\right)[/latex] — конечная группа, то и все ее циклические подгруппы конечны. Порядок группы [latex]\left(G,*\right)[/latex] делится на порядок ее любой подгруппы, в частности, на порядок любой циклической подгруппы. Этот порядок равен порядку образующего элемента. Таким образом, верна следующая теорема.

Теорема

Порядок конечной группы делится на порядок любого ее элемента.

Спойлер

Пусть [latex]\left(G,*\right)[/latex] — конечная группа порядка [latex]m[/latex] и [latex]a[/latex] — некоторый ее элемент порядка [latex]k[/latex]. Тогда [latex]m=kl[/latex] (при целом [latex]l[/latex]) и [latex]a^{m}=(a^{k})^{l}=e[/latex]. Следовательно, верно следующее предположение:
Любой элемент конечной группы при возведении в степень порядка группы дает единичный элемент.
Следовательно, порядок конечной группы делится на порядок любого ее элемента.
[latex]\blacksquare[/latex]

[свернуть]

Примеры:

  1. Пусть [latex]\left(G,+ \right)[/latex] — группа, где [latex]G=\left\{1,2,3,4 \right\}[/latex]. Найти порядок группы.
    Ответ: [latex]\left|G \right|=4[/latex]
  2. Пусть [latex]\left(G,* \right)[/latex] — группа, где [latex]G=\mathbb N[/latex]. Найти порядок группы.
    Ответ: [latex]\left|G \right|=\infty[/latex]

Литература:

  1. Белозеров Г.С. Конспект лекций
  2. Фаддеев Д.К. Лекции по алгебре. М.:Наука, 1984, стр. 247
  3. Кострикин А.И. Введение в алгебру. Часть I. Основы алгебры. М.:Физико-математическая литература, 2000, стр. 142-143

Порядок группы

Тест для проверки знаний по теме «Порядок группы»

Таблица лучших: Порядок группы

максимум из 4 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных