M613. Подобные треугольники

Задача из журнала «Квант» (1980, №3)

Условие

На сторонах треугольника $ABC$ во внешнюю сторону построены подобные между собой треугольники $ADB,$ $BEC$ и $CFA,$ где
$$\frac{|AD|}{|DB|} = \frac{|BE|}{|EC|}= \frac{|CF|}{|FA|}=k;$$ $$\widehat{ADB}=\widehat{BEC}=\widehat{CFA}=\alpha.$$ Докажите, что:

  1. середины отрезков $AC,$ $DC,$ $BC$ і $EF -$ вершины параллелограмма;
  2. у этого параллелограмма два угла имеют величину $\alpha,$ a отношение длин сторон равняется $k.$
Л. Купцов

Решение

Обозначим через $\vec a^\prime$ вектор, полученный из вектора $\vec a$ поворотом на угол $\alpha$ против часовой стрелки. (Как известно, $(k\vec a)^\prime = k\vec a ^\prime$ для любого числа $k,$ $(\vec a+\vec b)^\prime=\vec a^\prime+\vec b^\prime, $ и вообще, для любого числа слагаемых, $(\vec a+\vec b+\ldots+\vec c)^\prime=\vec a^\prime+\vec b^\prime+\ldots+\vec c^\prime). $

Введем векторы $\overrightarrow{DA} = \vec a,$ $\overrightarrow{EB} = \vec b,$ $\overrightarrow{FC}=\vec c$ (см. рис.1).

рис.1

По условию $\overrightarrow{DB}=\frac 1k \vec a^\prime,$ $\overrightarrow{EC}=\frac 1k \vec b^\prime,$ $\overrightarrow{FA}=\frac 1k \vec c^\prime.$ Так как
$$\overrightarrow{AD}+\overrightarrow{DB}+\overrightarrow{BE}+\overrightarrow{EC}+\overrightarrow{CF}+\overrightarrow{FA}=\vec 0,$$ $$-\vec a+\frac 1k \vec a^\prime-\vec b+\frac 1k \vec b^\prime-\vec c+\frac 1k \vec c^\prime=\vec
0,$$ то есть $\vec a+\vec b+\vec c=\frac{\vec a^\prime+\vec b^\prime+\vec c^\prime}{k}=\frac 1k (\vec a+\vec b+\vec c)^\prime.$
Обозначив $\vec a+\vec b+\vec c$ через $\vec u,$ получим $$\vec u-\frac 1k \vec u^\prime=0. \qquad (\ast)$$ Поскольку векторы $\vec u$ та $\vec u^\prime$ неколинеарные $(\alpha \ne 0$ и $\alpha \ne 2\pi),$ равенство $(\ast)$ возможно тогда и только тогда, когда $\vec u=\vec 0.$ Поэтому $\vec a+\vec b+\vec c=\vec 0.$

Далее: поскольку $Q \: -$ середина $[DC]$ и $P \: -$ середина $[AC]$ (см. рис.1), $\overrightarrow{QP}=\frac 12 \vec a.$ Аналогично $\overrightarrow{QR}=\frac 12 \overrightarrow{DB}.$ Так как $(PQ)\|(AD)$ и $(QR) \| (BD),$ имеем $\widehat{PQR}=\alpha.$

Наконец, $$\overrightarrow{RS}=\overrightarrow{RC}+\overrightarrow{CF}+\overrightarrow{FS}=\frac 12 \overrightarrow{BC}-\vec c+\frac 12 \overrightarrow{FE}=$$ $$=\frac 12(-\vec b+\frac 1k \vec b^\prime)-\vec c+\frac 12 (\vec c-\frac 1k \vec b^\prime)=-\frac{\vec b+\vec c}{2}=\frac{\vec a}{2}=\overrightarrow{QP}.$$

Таким образом, четырехугольник $PQRS \: -$ параллелограмм с углом $PQR,$ равным $\alpha,$ в котором отношение длин сторон имеет вид $\frac{|PQ|}{|RQ|}=\frac{|AD|}{|DB|}=k.$

Л. Купцов

М827. О равновеликих треугольниках

 

Задача из журнала «Квант» (1984 год, 1 выпуск)

Условие

Известно, что четыре синих треугольника на рисунке 1 равновелики.

  1. Докажите, что три красных четырехугольника на этом рисунке также равновелики.
  2. Найдите площадь одного четырехугольника, если площадь одного синего треугольника равна 1.

Решение

Нам понадобится следующая часто применяемая

Лемма. Пусть $Р$ — точка на стороне $KL$ треугольника $KLM$. Тогда отношение площадей треугольников и равно $$S_{MKP}:S_{MPL}=|KP|:|PL|.$$ (Для доказательства достаточно заметить, что треугольники $MKP$ и $MPL$ имеют общую высоту проведенную из вершины $М$ (рис. 2).).

Рис. 1
Рис. 2
Рис. 3
  1. Введем обозначения, как  на рисунке 1. Заметим, что треугольники $AA_0C_0$ и $AA_0C_1$ равновелики (каждый из них составлен из треугольника $AA_0B_0$ и одного из из синих треугольников). Эти треугольники имеют общее основание $AA_0$, поэтому их вершины $C_0$ и $C_1$ равноудалены от прямой $AA_0$, то есть прямые $AA_0$ и $C_1C_0$ параллельны. Аналогично, $BB_0||A_1A_0$ и $CC_0||B_1B_0$. Рассмотрим трапецию $AA_0C_0C_1$ (рис. 3). Её диагонали пересекаются в точке $B_0$, а продолжения боковых сторон — в точке $B$. Эти точки лежат на прямой, соединяющей середины $D$ и $E$ её оснований $AA_0$ и $C_1C_0$. (Действительно, $B_0$ — центр гомотетии треугольников $B_0AA_0$ и $B_0C_0C_1$, а $B_0$ — центр гомотетии треугольников $BAA_0$ и $BC_1C_0$). А поскольку эта прямая параллельна $A_1A_0$, точка $B_0$ — середина отрезка $A_1A$. По лемме отсюда вытекает,что $S_{AB_0C}=S_{B_0A_1C}$. Следовательно (см. рис. 1), площади четырехугольников $AB_0A_0B_1$ и $CA_0C_0A_1$ равны. Аналогично доказывается, что и третий красный четырехугольник $BC_0B_0C_1$ имеет такую же площадь.

    Подумайте, останется ли верным утверждение этого пункта задачи, если потребовать равенства площадей только трех угловых синих треугольников.

  2. Площадь красного четырехугольника $s=1+\sqrt{5}$. Чтобы составить уравнение для нахождения искомой площади $s$, выразим двумя способами отношение $|BC_1|:|C_1A|$ с помощью леммы:$$|BC_1|:|C_1A|=S_{CBC_1}:S_{CC_1A}=(2s+2):(s+2)=S_{B_0BC_1}:S_{B_0C_1A}=(s/2):1.$$
    (Пояснения здесь требуют только равенство $S_{B_0BC_1}$. Как было показано выше, точка $E$ — середина $C_0C_1$ (рис. 3). Отсюда, опять-таки пользуясь леммой, легко вывести, что треугольники $B_0BC_1$ и $B_0BC_0$ равновелики. А вместе они составляют четырехугольник $BC_0B_0C_1$ площади $s$). Итак, $s$ удовлетворяет уравнению $$s^2-2s-4=0.$$ откуда $s=1+\sqrt{5}$.
  3. Б. И. Чиник, В. Н. Дубровский

М1654. Задача о медиане и биссектрисе неравнобедренного треугольника

Задача из журнала «Квант» (1998 год, 5 выпуск)

Условие

Через основание $L$ и $M$ биссектрисы $BL$ и медианы $BM$ неравнобедренного треугольника $ABC$ провели прямые параллельно, соответственно, сторонам $BC$ и $BA$ до пересечения с прямыми $BM$ и $BL$ в точка $D$ и $E$. Докажите, что угол $BED$ прямой.

Рис. 1

Первое решение

Обозначим $O=LD \cap ME$, и пусть точка $O$ лежит внутри треугольника $ABC$ (именно такое расположение было предложено рассмотреть на олимпиаде). $ME$ — медиана треугольника $MBC$ (Рис.1), а значит, и треугольника $MDL$, т.е. $OL=OD$. Далее $\angle DLB = \angle LBC,\; \angle MEL = \angle ABL = \angle LBC$. Получили: $\angle MEL = \angle DLB, \; OL= OE$.

Итак, в треугольнике $LED$ медиана $EO$ равна половине стороны $LD$. Следовательно, угол $DEL$ прямой, откуда сразу следует утверждение задачи.

Случай внешнего расположения точки $O$ рассматривается аналогично. А можно и не рассматривать этот случай, а просто сослаться на такое почти очевидное предложение.

Рис. 2

Лемма. Пусть $B$ и $C$ — произвольные точки на выходящих из $A$ лучах (Рис.2), $BD \parallel CK, \; CE \parallel BF$. Тогда и $ED \parallel KF$.

Следует из теоремы Фалеса; легко получить его с помощью векторов.

С помощью векторов нетрудно получить и естественное решение исходной задачи.

Второе решение

Рис. 3

Ниже мы будем рассматривать векторы в базисе $\{\vec{a} , \; \vec{c} \}, \;$ где $\vec{a} = \vec{BC},\; \vec{c} = \vec{BA}, \;$ длины этих векторов обозначим через $a$ и $c$ соответственно.

Имеем: $\displaystyle \vec{BL}=\vec{c} + \frac{c}{a+c} \Big( \vec{a} — \vec{c} \Big) = \frac{1}{a+c}\Big(a \vec{c} + c \vec{a} \Big)$.

Обозначим $\vec{BE} = \alpha \vec{BL}$, тогда $$ \alpha \vec{BL} + \vec{EM} = \vec{BM} =\frac{1}{2} \Big( \vec{a} + \vec{c} \Big).$$ Приравняем проекции левой и правой частей этого равенства на вектор $\displaystyle \vec{a}: \frac{\alpha c}{a+c} = \frac{1}{2}$, откуда $\displaystyle \alpha = \frac{a+c}{2c}$.

Аналогично, положив $\vec{BD} = \beta \vec{BM}$, получим $\beta \vec{BM}+\vec{DL}=\vec{BL}$; проектируя обе части этого равенства на $\vec{c}$, находим $\displaystyle \frac{\beta}{2}=\frac{a}{a+c}$.

Получили $\displaystyle \vec{BE} = \frac{\vec{a}}{2} + \frac{a}{2c} \vec{c},\; \vec{BD} = \frac{a}{a+c} \Big(\vec{a} + \vec{c} \Big)$. Таким образом, $\displaystyle\frac{\vec{BE}}{a} = \frac{1}{2}\left( \frac{\vec{a}}{a} + \frac{\vec{c}}{c}\right)$ — это высота треугольника, построенного на единичных векторах $\displaystyle \frac{\vec{a}}{a}$ и $\displaystyle \frac{\vec{c}}{c}$. Далее, $\displaystyle \frac{\vec{BE}}{a} = \frac{1}{a+c}\left(a \cdot \frac{\vec{a}}{a}+c \cdot \frac{\vec{c}}{c}\right)$ — (внутренняя) точка основания этого треугольника, отличная от основания высоты. Поэтому очевидно(Рис.3), что $\displaystyle \frac{\vec{BD}}{a}-\frac{\vec{BE}}{a}\bot\vec{BE}$ — и утверждение задачи доказано.

Разумеется, к этому решению можно было подойти более формально: вектор $\displaystyle \vec{BD}-\vec{BE}=\frac{a \left( a-c \right)}{2 \left( a+c \right)} \left(\frac{\vec{a}}{a}-\frac{\vec{c}}{c}\right) $ параллелен основанию треугольника. А можно было и воспользоваться понятием скалярного произведения векторов: $$\displaystyle \left( \vec{BD}, \vec{BE} \right) = \frac{a^2}{2} \left( 1+\frac{\Big( \vec{a}, \vec{c} \Big)}{ac} \right), $$ $$\displaystyle \left( \vec{BE}, \vec{BE} \right) = \frac{a^2}{2} \left( 1+\frac{\Big( \vec{a}, \vec{c} \Big)}{ac} \right).$$

А. Акопян, В. Сендеров

Ф703. О времени полёта ракеты

Задача из журнала «Квант» (1982 год, 3 выпуск)

Условие

Ракета запущена с поверхности Земли вертикально вверх с первой космической скоростью и возвращается на Землю недалеко от места старта. Сколько времени она находилась в полёте? Радиус Земли $R=6400$ км.

Примечание. Площадь эллипса с полуосями $a$ и $b$ равна $S=\pi ab.$

Решение

Траектория ракеты представляет собой часть очень вытянутого эллипса, в одном из фокусов которого находится центр Земли (см. рисунок). Скорость ракеты в верхней точке $D$ траектории почти равна нулю.

Траектория ракеты

Согласно закону сохранения энергии: $$\frac{mv_0^2}2-G\frac{Mm}R\approx-G\frac{Mm}{2b}. \tag{$\cdot$}$$Здесь $M$ — масса Земли, $m$ — масса ракеты, $v_0=\sqrt{\displaystyle\frac{GM}{R}}$ — начальная скорость ракеты (первая космическая скорость); $-G\displaystyle\frac{Mm}R$ и $-G\displaystyle\frac{Mm}{2b}$ — потенциальная энергия ракеты у поверхности Земли (при запуске) и в верхней точке траектории. Из $(\cdot)$ найдем большую полуось эллипса: $b\approx r.$

Из третьего закона Кеплера (квадраты периодов обращения по эллиптическим траекториям относятся как кубы больших полуосей эллипсов) следует, что полное время $T_э$ движения ракеты по всему эллипсу было бы равно периоду $T_0$ обращения спутника, движущегося по круговой орбите вблизи поверхности Земли, то есть $$T_э=T_0=\frac{2\pi R}{\sqrt{\displaystyle\frac{GM}{R}}}=2\pi\sqrt{\displaystyle\frac{R}{g}}.$$Из второго закона Кеплера (радиус-вектор, соединяющий тело, движущееся под действием силы тяготения по замкнутой орбите, с центром притяжения, за равные промежутки времени заметает равные площади) следует, что отношение времени движения $T$ по половине эллипса (участок $BDC$) к полному периоду $T_э$ равно отношению площади заштрихованной на рисунке фигуры $OBDC$ к полной площади эллипса:$$\frac T{T_э}=\frac{{\displaystyle\frac12}\pi ab+ab}{\pi ab}.$$ Отсюда находим время полёта $T:$ $$T=T_э\bigg(\frac12+\frac{1}{\pi}\bigg)=(\pi+2)\sqrt{\displaystyle\frac Rg}\approx\;1\;ч.\;9\;мин.$$

Е. Сурков

M1817. Окружности вписанные в четырёхугольник

Задача из журнала «Квант» (2002 год, 6 выпуск)

Условие

Четырехугольник с перпендикулярными диагоналями вписан в квадрат. Диагонали и стороны четырехугольника разделили квадрат на 8 треугольников, попеременно окрашенных в красный и синий цвет (рис.1).

рис 1

Докажите, что сумма радиусов окружностей, вписанных в красные треугольники равна сумме радиусов окружностей, вписанных в синие треугольники.

Решение

Сначала два вспомогательных факта.

  1. Диаметр вписанной в прямоугольный треугольник окружности равен разности между суммой его катетов и гипотенузой, т.е. $2r = a + b — c.$ Обоснование этого полезного утверждения можно усмотреть из рисунка

  1. Два взаимно перпендикулярных отрезка разделили квадрат на четыре четырехугольнька. Тогда сумма периметров любых двух несоседних из них равна сумме периметров двух других (рис.3).
рис 3

Обоснуем это. Один из разделяющих отрезков перенесем параллельно себе так, чтобы он прошел через центр квадрата; при этом сумма периметров несоседних четырехугольников останется прежней. То же самое сделаем со вторым отрезком. Но два отрезка, взаимно перпендикулярные и проходящие через центр квадрата, делят его на четыре равных четырехугольника. Теперь рассуждение легко закончить самостаятельно.

Вернемся к условию задачи. На основании утверждения 2 можно заключить, что сумма длин всех катетов красных треугольников равна сумме длин всех катетов синих треугольников. К этому можно добавить, что сумма длин всех гипотенуз красных треугольников равна сумме длин всех гипотенуз синих треугольников. Откуда используя утверждение 1, делаем вывод, что сумма радиусов окружностей, вписанных в красные треугольники, равна сумме радиусов окружностей, вписанных в синие треугольники.

В. Произволов