M1247. О покрытии плоскости квадратами

Задача из журнала «Квант» (1991 год, 3 выпуск)

Условие

Можно ли покрыть всю плоскость квадратами с длинами сторон $1, 2, 4, 8, 16, …$ (без наложения), используя каждый квадрат не более а) десяти раз; б) одного раза?

Доказательство

  1. Можно. Пример покрытия (где квадрат со стороной $1$ используется $4$ раза, а остальные — по $3$ раза) приведен на рисунке $1$.
    Рис. 1
  2. Нельзя. Предположим, что существует покрытие, в котором все квадраты различны. Поскольку сумма всех чисел не превосходящих $2^{n-1}$, меньше $2^n$ $(1+2+2^2+ … +2^{n-1} = 2^n-1)$, то к каждой стороне любого из квадратов нашего покрытия должна примыкать сторона большего квадрата. Отсюда следует, что каждая вершина квадрата должна лежать на стороне большего квадрата (если вершина $B$ квадрата $ABCD$ лежит на стороне большего квадрата, примыкающего к стороне $AB$ (рис. $2$), то вершина $C$ будет лежать на стороне большего квадрата, примыкающего к $BC$, и т.д.).
Рис. 2

Рассмотрим теперь наименьший из всех квадратов покрытия. Четыре квадрата будут примыкать к нему так, как показано на рисунке $3$.

Рис. 3

Рассмотрим больший из этих квадратов — пусть он примыкает к стороне $AB$ наименьшего (на рисунке — это черный квадрат). Тогда вершина $A$ этого квадрата не лежит на стороне большего, чем он, квадрата. Получили противоречие.

Д.Фомин

М1864. О сумме квадратов длин попарно параллельных отрезков

Задача из журнала «Квант» (2003 год, 3 выпуск)

Условие

В квадрат $ABCD$ вписана ломаная $MKALN$ такая, что $\angle MKA = \angle KAL = \angle ALN = 45^{\circ}(рис. 1).$ Докажите, что $$MK^2 + AL^2 = AK^2 + NL^2.$$

рис. 1

Симметрично отобразим $\triangle ABK$ относительно гипотенузы $AK$, а $\triangle ADL$ $-$ относительно гипотенузы $AL$ (рис.$2$). При этом точки $B$ и $D$ склеятся в точку $P$, так как $AB$ = $AD$, $\angle B = \angle D = 90^{\circ}$ и $AP$ является высотой $\triangle AKL$.

рис. 2
Более того, при этом точки $M$ и $N$ склеятся в точку $Q$, где $Q$ $-$ ортоцентр $\triangle AKL$. Это произойдет потому, что $\angle QLA = \angle QKA = \angle KAL = 45^{\circ},$ из чего следует, что прямые $QL$ и $QK$ $-$ высоты $\triangle AKL$, а три высоты пересекаются в одной точке.

Сразу делаем вывод: $BM = DN.$

Используя теорему Пифагора сначала для $\triangle ABK$ и $\triangle MBK$, а затем для $\triangle ADL$ и $\triangle NDL$ получаем $AB^2 — BM^2 = AK^2 — MK^2$ и $AD^2 — DN^2 = AL^2 — NL^2.$

Окончательно получим $MK^2 + AL^2 = AK^2 + NL^2,$ что и требовалось доказать.

Дополнительно можно доказать, что $AM = AN = KL$ и что пять точек $M,$ $K,$ $A,$ $L$ и $N$ принадлежат одной окружности.

В. Произволов

Некоторые дополнения

$1$.При симметричном отображении $\triangle$$ABK$ относительно гипотенузы $AK$ мы получаем $\triangle APK$, в котором $AB = AP$, $BK = KP$, $MK = KQ$, $BM = QP$, $\angle MKA = \angle AKQ = 45^{\circ}$, $\angle BKM = \angle PKQ$.

Аналогично, при симметричном отображении $\triangle ADL$ относительно гипотенузы $AL$ мы получаем $\triangle APL$, в котором $AD = AP$, $LD = LP$, $NL = QL$, $ND = QP$, $\angle ALN = \angle ALQ = 45^{\circ}$, $\angle NLD = \angle QLK$.

Таким образом, так как $$BM = QP,$$$$ND = QP,$$ тогда, по транзитивности, $$ND = BM.$$

$2$. Докажем, что $Q$ — ортоцентр $\triangle AKL$. Для этого воспользуемся рис.$3$.

рис.3

$AP \perp KL$. Проведем через точки $K$ и $Q$ прямую до пересечения с прямой $AL$, $$KQ \cap AL = K_{1}.$$ Также проведем прямую, проходящую через точки $L$ и $Q$ и пересекающую прямую $AK$, $$QL \cap AK = L_{1}.$$ Так как $AP$ — высота $\triangle AKL$. Осталось показать, что $KK_{1}$ и $LL_{1}$ — высоты $\triangle AKL$.

Рассмотрим $\triangle AKK_{1}$, в нём $$\angle KAK_{1} = \angle AKK_{1} = 45^{\circ},$$ тогда $$\angle AK_{1}K = 180^{\circ} — 45^{\circ} — 45^{\circ} = 90^{\circ} \Rightarrow $$ $$KK_{1} \perp AL,$$ то есть $KK_{1}$ — высота $\triangle AKL$. Аналогично, $\triangle ALL_{1}$: $$\angle KAK_{1} = \angle AKK_{1} = 45^{\circ} \Rightarrow$$ $$LL_{1} \perp AK,$$ то есть $LL_{1}$ — высота $\triangle AKL$.

Таким образом, три высоты $\triangle AKL$ пересекаются в одной точке $Q$, что и означает, что $Q$ — ортоцентр $\triangle AKL$.

$3$. Распишем более подробно как мы получили равенство.

$\triangle ABK:$ $$AB^2 + BK^2 = AK^2 \Rightarrow BK^2 = AK^2 — AB^2$$ $\triangle BMK:$ $$BM^2 = MK^2 — BK^2 \Rightarrow BM^2 = MK^2 — AK^2 + AB^2$$ $$\Rightarrow AB^2 — BM^2 = AK^2 — MK^2$$ $\triangle ALD:$ $$AL^2 = AD^2 + LD^2 \Rightarrow LD^2 = AL^2 — AD^2$$ $\triangle NDL:$ $$ND^2 = NL^2 — LD^2 \Rightarrow ND^2 = NL^2 — AL^2 + AD^2$$ $$\Rightarrow AD^2 — ND^2 = AL^2 — NL^2$$ $$MK^2 + AL^2 = AK^2 + BM^2 — AB^2 + AD^2 — ND^2 + NL^2 = AK^2 + NL^2,$$(так как $AD = AB, ND = BM$).

$4$. Докажем, что точки $M$, $K$, $A$, $L$ и $N$ принадлежат одной окружности.

Так как около любого треугольника можно описать окружность, то точки $K,$ $A$ и $L$ уже принадлежат окружности $\omega_{1}$, описанной около $\triangle AKL$. Покажем, что точки $M$ $L$ также принадлежат этой окружности.

Рассмотрим $\triangle BMK$ и обозначим в нем $\angle BKM = \alpha$, тогда $$\angle BMK = 90^{\circ} -\alpha.$$ $\triangle AMK:$ $$\angle AMK = 180^{\circ} — (90^{\circ} -\alpha) = 90^{\circ} + \alpha$$ $$\angle MAK = 180^{\circ} — (45^{\circ} + 90^{\circ} + \alpha) = 45^{\circ} — \alpha$$ $\triangle ADL:$ $$\angle DAL = 90^{\circ} — (45^{\circ} -\alpha + 45^{\circ}) = \alpha$$ $\triangle NLD:$ $$\angle LND = 45^{\circ} + \alpha$$ $$\angle NLD = 90^{\circ} — (45^{\circ} + \alpha) = 45^{\circ} — \alpha.$$

Из первого пункта следует, что $$\angle NLD = \angle QLK = 45^{\circ} — \alpha,$$$$\angle BKM = \angle QKP = \alpha.$$Значит, $$\angle ALK = 45^{\circ} + 45^{\circ} — \alpha = 90^{\circ} — \alpha,$$$$\angle MKL = 45^{\circ} + 45^{\circ} + \alpha = 90^{\circ} + \alpha.$$Тогда, $$\angle AMK + \angle ALK = 90^{\circ} + \alpha + 90^{\circ} — \alpha = 180^{\circ}$$ $$\angle MKL + \angle MAL = 90^{\circ} + \alpha + 90^{\circ} — \alpha = 180^{\circ}$$

Таким образом, в четырехугольнике $AMKL$ сумма противолежащих углов равна $180^{\circ}$, значит четырехугольник $AMKL$ можно вписать в окружность $\omega_{2}$. Так как, окружность $\omega_{2}$ описана около $AMKL$, тогда она описана около $\triangle AKL$, но так как около треугольника можно описать только одну окружность, то $\omega_{1} = \omega_{2}$ и точки $M$, $K$, $A$, $L$ и $N$ принадлежат одной окружности.

$5$. Докажем, что $AM = AN = KL.$

Из первого пункта: $$BM = ND,$$ а так как $$AB = AD,$$ то $$AM = AN$$Осталось показать, что $$AM = KL.$$Так как $$\angle MKA = \angle KAL = 45^{\circ},$$ то $MK \parallel AL$, тогда, так как $\angle MAL = \angle KLA = 90^{\circ} — \alpha$, $AMKL$ — равнобокая трапеция $\Rightarrow$ $AM = KL$, тогда $$AM = AN = KL.$$

М704. О квадрате, вокруг которого описан параллелограмм

Задача из журнала «Квант» (1981 год, 9 выпуск)

Условие

Вокруг квадрата описан параллелограмм (вершины квадрата лежат на разных сторонах параллелограмма). Докажите, что перпендикуляры, опущенные из вершин параллелограмма на стороны квадрата, образуют новый квадрат $(рис. 1).$

Решение

Пусть вокруг черного квадрата $(см. рис. 1)$ описан голубой параллелограмм $ABCD$ и через все его вершины проведены красные прямые, перепендикулярные сторонам квадрата. Достаточно доказать, что при повороте на $90^{\circ}$ вокруг центра $O$ черного квадрата красные прямые переходят друг в друга.

                                              $ Рис. 1.$

Пусть $H = R_{0}^{90^{\circ}}(A).$ Поскольку стороны повернутого параллелограмма перпендикулярны сторонам исходного, $(HE)\perp (AB)$ и $(HF)\perp (BC).$ Поэтому $H$ — точка пересечения высот треугольника $EBF$ и, следовательно, $H$ лежит на красной прямой, проведенной через вершину $B.$ Таким образом, красная прямая, проведенная через точку $A,$ переходит при повороте $R_{0}^{90^{\circ}}$ в красную прямую, проведенную через точку $B.$ Отсюда немедленно следует утверждение задачи.

Теорема о том, что три высоты треугольника пересекаются в одной точке (мы надеемся, известная нашим читателям), не доказывается в школьном учебнике. Поэтому мы приведем еще одно решение задачи $M704,$ хотя и не столь изящное, но тоже простое.

Это решение годится и для более общего случая, когда роль квадрата играет черный параллелограмм $(рис. 2):$ мы докажем, что красные прямые (соответственно параллельные сторонам черного параллелограмма) образуют параллелограмм, гомотетичный черному параллелограмму.

                                $ Рис. 2.$

Для доказательства достаточно проверить, что красная точка $K$ (см. рисунок 3 — фрагмент рисунка 2) лежит на диагонали параллелограмма $EG.$ Из подобия заштрихованных треугольников следует, что $\frac{x}{a} = \frac{b}{v}$ и $\frac{a}{y} = \frac{u}{b}$ (обозначения см. на рисунке 3). Перемножив эти равенства, получим $\frac{x}{y} = \frac{u}{v},$ а это и значит, что точка $K$ лежит на $EG.$

                                      $ Рис. 3.$

Полученный результат напоминает теорему Паппа, которую $Д.~ Гильберт$ и $С.~ Кон-Фоссен$ в своей замечательной (переизданной недавно по-русски) книге «Наглядная геометрия» формулируют так $(с. 126—127):$ если вершины замкнутой шестизвенной ломаной лежат попеременно на двух прямых и две пары ее противоположных звеньев параллельны, то и третья пара звеньев параллельна (на рисунке 3 — как раз такая ломаная $AKBEFGA$).

На этом возможности обобщений не исчерпаны. Если «сфотографировать» конфигурацию рисунка 3 (то есть спроектировать ее из некоторой точки $S,$ не лежащей в плоскости рисунка, на непараллельную плоскость), мы получим конфигурацию Паскаля: три пары параллельных на рисунке 3 прямых будут пересекаться на «фотографии» в трех точках одной прямой — нам удобно обозначить их $A_{1},$ $F_{1}$, $B_{1}$ $(рис. 4)$ — и наша теорема о точках $E,$ $K,$ $G$ превратиться в такую теорему: если каждая тройка точек $A,$ $B,$ $F$ и $A_{1},$ $B_{1},$ $F_{1}$ лежит на прямой, то точки $(AB_{1})\cap (A_{1}B),$ $(BF_{1})\cap (B_{1}F)$ и $(AF_{1})\cap (A_{1}F)$ также лежат на прямой.                                                $Рис. 4.$

Н.Васильев

 

Задача из журнала «Квант» (2000 год, 3 выпуск) М1707*

Условие

Квадрат клетчатой бумаги, состоящий из $n\times n$ клеток, разрезан на $2n$ прямоугольников. При этом каждый прямоугольник расположен либо целиком ниже, либо выше ступенчатой ломаной, разделяющей квадрат (рис.1). Докажите, что найдется клетка клетчатой бумаги, являющаяся одним из названных прямоугольников.

Рис. 1

Решение

Ступенчатая ломанная разрезает квадрат на два ступенчатых треугольника $T_1$ и $T_2$, при этом основание $T_1$ состоит из $n$ клеток, а основание $T_2$ – из $n – 1$ клетки. В силу условия задачи, один из них разрезан на $m$, а другой – на $k$ прямоугольников, причем $m + k = 2n$. Пока что фиксируем внимание на отдельно взятом ступенчатом треугольнике $T$, в основании которого $s$ клеток (рис.2). Так как при разрезании $T$ на прямоугольники любые две точки из набора $A_1, A_2, \ldots, A_s$ должны принадлежать разным прямоугольникам, можно заключить, что $T$ нельзя разрезать на менее чем $s$ прямоугольников.

Рис. 2

Разберем далее тот случай, когда $T$ разрезан в точности на s прямоугольников; тогда каждая из точек $A_1, A_2 , \ldots, A_s$ принадлежит только одному из них и, более того, каждая из $s$ закрашенных клеток принадлежит целиком только одному из $s$ прямоугольников. Не закрашенных клеток, примыкающих по сторонам к закрашенным, на единицу меньше, чем закрашенных, поэтому хотя бы один из $s$ прямоугольников не выйдет за пределы своей заштрихованной клетки, т.е. будет с ней совпадать. Возвращаясь к ступенчатым треугольникам $T_1$ и $T_2$, можно сказать, что $m \geq n$, а $k \geq n-1$. Но так как $m + k = 2n$, то либо $m = n$, либо $k = n – 1$. Значит, либо в $T_1$, либо в $T_2$ найдется прямоугольник, совпадающий с клеткой клетчатой бумаги.

В.Произволов

M1767. Внутри квадрата

Задачa из журнала «Квант» (2001 год, 2 выпуск)

Условие

Внутри квадрата $ABCD$ расположены точки $P$ и $Q$ так, что $\angle PAQ = \angle PCQ = 45 ^{\circ}$ (рис.1). Докажите, что $PQ^{2} = BP^{2} + QD^{2}$.

Решение

Симметрично отразим $\triangle APB $ относительно прямой $AP$, a $\triangle AQD $ — относительно прямой $AQ$. При этом отраженные точки $B$ и $D$ «склеятся» в одну точку $M$ (рис.2). Затем симметрично отразим $\triangle CPB $ относительно прямой $CP$, а треугольник $CQD$ — относительно прямой $CQ$. При этом отраженные точки $B$ и $D$ «склеятся» в одну точку $N$.

Заметим, что $\angle PMQ + \angle QNP = 180^{\circ}$, но так как треугольники $PMQ$ и $QNP$ равны, то $\angle PMQ = \angle QNP$, т.е. $\angle PMQ = 90^{\circ}$.

Значит, треугольник $PMQ$ прямоугольный и $PM^{2} + QM^{2} = PQ^{2}$. Но $PM = BP$, а $QM = QD$, поэтому окончательно можно утверждать, что $PB^{2} + QD^{2} = PQ^{2}$.

В. Произволов