М1319. Задача об углах в треугольнике

Задача из журнала «Квант» (1991 год, 12 выпуск)

Условие

Дан треугольник $ABC$ и точка $M$ внутри него. Докажите, что хотя бы один из углов $MAB$, $MBC$, $MCA$ меньше или равен $30^{\circ}$.

Рис. 1.

Пусть точка $M$ внутри треугольника $ABC$ такова, что все углы из условия задачи больше $\displaystyle \frac{\pi}6$. Тогда она лежит в треугольнике $AED$ (см. рис. $1$).

Следовательно, достаточно доказать, что $\angle ECA \leqslant$ $\displaystyle \frac{\pi}6$.

Рассмотрим конфигурацию рисунка $2$, где $r_1=1$, $\angle BO_2M =$ $\displaystyle \frac{\pi}{3}$. Точка $A$ лежит на прямой $l$ в круге с центром $O_2$, точка $M$ — в треугольнике $ABC$. Покажем, что при этих условиях отрезки $BM$ и $O_1O_2$ имеют общую точку.

Рис. 2.

Пусть это не так (см. рис. $3$).

На рисунке $3$ прямая $MD$ — касательная к окружности с центром $O_1$.

Имеем: $O_1C \perp l$, треугольник $O_1CM$ правильный, отрезки $BM$ и $O_1C$ пересекаются. Так как угол $BMm$ равен $\displaystyle \frac{\pi}6$, то прямая $m$, являющаяся касательной к окружности с центром $O_2$, пересекается с $l$ в точке луча $DC$
$($либо $m \parallel l)$. Следовательно, и точка $A$ может лежать лишь на этом луче; значит, точка $M$ лежит вне треугольника $ABC$.

Получили: $O_1O_2 \cap BM \not= \varnothing$.

Для решения задачи достаточно доказать, что $r_2 \leqslant d(O_2, l)$.(Здесь
$d(O_2, l)$ — расстояние от точки $O_2$ до прямой $l$.) Пусть $d(O_2, l) \geqslant d(O_1, l)$. Имеем: $$r_2 = 2 \sin \alpha, d(O_2, l) = 1 + (\cos \alpha + \frac{\sqrt{3}}2 \cdot 2 \sin \alpha) \cos \left(\frac{2\pi}3 {-} \alpha \right) = \\ = \frac 12 + 2 \sin^2 \alpha \geqslant 2 \sin \alpha = r_2.$$

Рис. 3.

Случай $d(O_2, l) < d(O_1, l)$ рассматривается аналогично.

Замечание. Несложное доказательство допускает также и следующее утверждение. Пусть точка $M$ лежит внутри четырехугольника $ABCD$. Тогда хотя бы один из углов $MAB$, $MBC$, $MCD$, $MDA$ меньше или равен $\displaystyle \frac{\pi}4$. Докажите это утверждение самостоятельно.

В. Сендеров

М1961. О точке в параллелограмме

Задача из журнала «Квант» (2005 год, 4 выпуск)

Условие

В параллелограмме $ABCD$ нашлась точка $Q$ такая, что $\angle AQB + \angle CQD=180°$. Докажите равенства углов: $\angle QBA = \angle QDA$ и $\angle QAD = \angle QCD$ (рис.1).

Рис. 1
Рис. 1

Треугольник $ABQ$ параллельно перенесем на вектор $\overrightarrow{\rm BC}$, и новое положение точки $Q$ обозначим через $P$ (рис. 2).
Рис. 2
Рис. 2
Ввиду условия задачи, около четырехугольника $QCPD$ можно описать окружность. Но тогда $$\angle DCP(= \angle QBA) = \angle PQD = \angle QDA,$$ а также $$\angle QCD = \angle QPD = \angle QAD,$$ т.е. утверждение доказано.

В.Произволов

Ф703. О времени полёта ракеты

Задача из журнала «Квант» (1982 год, 3 выпуск)

Условие

Ракета запущена с поверхности Земли вертикально вверх с первой космической скоростью и возвращается на Землю недалеко от места старта. Сколько времени она находилась в полёте? Радиус Земли $R=6400$ км.

Примечание. Площадь эллипса с полуосями $a$ и $b$ равна $S=\pi ab.$

Решение

Траектория ракеты представляет собой часть очень вытянутого эллипса, в одном из фокусов которого находится центр Земли (см. рисунок). Скорость ракеты в верхней точке $D$ траектории почти равна нулю.

Траектория ракеты

Согласно закону сохранения энергии: $$\frac{mv_0^2}2-G\frac{Mm}R\approx-G\frac{Mm}{2b}. \tag{$\cdot$}$$Здесь $M$ — масса Земли, $m$ — масса ракеты, $v_0=\sqrt{\displaystyle\frac{GM}{R}}$ — начальная скорость ракеты (первая космическая скорость); $-G\displaystyle\frac{Mm}R$ и $-G\displaystyle\frac{Mm}{2b}$ — потенциальная энергия ракеты у поверхности Земли (при запуске) и в верхней точке траектории. Из $(\cdot)$ найдем большую полуось эллипса: $b\approx r.$

Из третьего закона Кеплера (квадраты периодов обращения по эллиптическим траекториям относятся как кубы больших полуосей эллипсов) следует, что полное время $T_э$ движения ракеты по всему эллипсу было бы равно периоду $T_0$ обращения спутника, движущегося по круговой орбите вблизи поверхности Земли, то есть $$T_э=T_0=\frac{2\pi R}{\sqrt{\displaystyle\frac{GM}{R}}}=2\pi\sqrt{\displaystyle\frac{R}{g}}.$$Из второго закона Кеплера (радиус-вектор, соединяющий тело, движущееся под действием силы тяготения по замкнутой орбите, с центром притяжения, за равные промежутки времени заметает равные площади) следует, что отношение времени движения $T$ по половине эллипса (участок $BDC$) к полному периоду $T_э$ равно отношению площади заштрихованной на рисунке фигуры $OBDC$ к полной площади эллипса:$$\frac T{T_э}=\frac{{\displaystyle\frac12}\pi ab+ab}{\pi ab}.$$ Отсюда находим время полёта $T:$ $$T=T_э\bigg(\frac12+\frac{1}{\pi}\bigg)=(\pi+2)\sqrt{\displaystyle\frac Rg}\approx\;1\;ч.\;9\;мин.$$

Е. Сурков

М1651. О наименьшей и наибольшей площади выпуклой фигуры

Задача из журнала «Квант» (1998 год, 5 выпуск)

Условие

Найдите а) наименьшую, б) наибольшую возможную площадь выпуклой фигуры, все проекции которой на оси $Oх$, $Oу$ и прямую $х = у$ суть отрезки единичной длины.

Ответ: а) $\sqrt{2}-1$; б)$\frac{2\sqrt{2}-1}{2}$.

Решение

Для обоих случаев а) и б) фигура $F$, о которой идет речь в задаче, заключается внутри шестиугольника, являющегося пересечением трех полос (шириной $1$ каждая) (рис.$1$).

Рис. 1
Рис. 1

Назовем такой шестиугольник накрывающим. В случае б) фигура $F$ совпадает с накрывающим шестиугольником, достигая наибольшей площади тогда, когда накрывающий шестиугольник симметричен относительно обеих диагоналей квадрата. Эта наибольшая площадь равна $\frac{2\sqrt{2}-1}{2}$, как показывают элементарные вычисления.

Рис. 2
Рис. 2

Минимальная площадь фигуры $F$ (случай а) реализуется на многоугольнике, который на каждой стороне накрывающего шестиугольника имеет по крайней мере одну вершину. Таким многоугольником будет четырехугольник $ABCD$ (рис.$2$), который во всех разновидностях накрывающих шестиугольников имеет одну и ту же площадь $\sqrt{2}-1$.

В.Тиморин

M1686. О равенстве непрерывных на отрезке функций

Задача из журнала «Квант» (1999 год, 3 выпуск)

Условие

Функции $f(x)$ и $g(x)$ непрерывны на отрезке $\left[0; 1\right]$ и удовлетворяют равенствам
$$\int\limits_{0}^{1} f(x) dx = \int\limits_{0}^{1} g(x) dx = 1$$ и $$\int\limits_{0}^{1} \sqrt{f^2(x)+g^2(x)} dx = \sqrt{2} .$$
Докажите, что $f(x) = g(x)$ на отрезке $\left[0; 1\right]$.

Для любой пары неотрицательных чисел $а$ и $b$ справедливо элементарное неравенство $a + b \leqslant \sqrt{2(a^2 + b^2)}$. При этом неравенство обращается в равенство лишь тогда, когда $a = b$. Ввиду этого и условий задачи, можно записать цепочку неравенств $$ 2 \leqslant \int\limits_{0}^{1} (|f(x)| + |g(x)|) dx \leqslant \sqrt{2} \int\limits_{0}^{1} \sqrt{f^2(x)+g^2(x)} dx = 2 .$$

Отсюда следует, что функции $f(x)$ и $g(x)$ равны и неотрицательны на отрезке $\left[0; 1\right]$.

Подобным образом читатель может доказать аналогичное утверждение для трех (и более) функций: если $f(x)$, $g(x)$ и $\varphi(x)$ непрерывны на отрезке $\left[0; 1\right]$ и $$\int\limits_{0}^{1} f(x) dx = \int\limits_{0}^{1} g(x) dx = \int\limits_{0}^{1} \varphi(x) = 1 ,$$ а
$$\int\limits_{0}^{1} \sqrt{f^2(x)+g^2(x)+\varphi^2(x)} dx = \sqrt{3}, $$ то $f(x) = g(x) = \varphi(x)$ на $\left[0; 1\right]$.

В.Произволов