Делители нуля

Делители нуля

Пусть $latex R$ — кольцо, $latex a, b\in R, a,b\ne 0, a\cdot b = 0$. Числа $latex a,b$  называются делителями нуля кольца $latex R$, причем $latex a$ — левый делитель нуля, $latex b$ — правый делитель нуля.

Пример 1:

$latex (C_{[-1;1]},+,\cdot)$ — кольцо непрерывных функций на промежутке $latex [-1,1]$.

$latex f(x)=\begin{cases} x, 0\le x\le 1;\\ 0, -1\le x\le 0.\end{cases}$

$latex g(x)=\begin{cases} -x, -1\le x\le 0;\\ 0, 0\le x\le 1.\end{cases}$

$latex f(x)\cdot g(x)=0$

Пример 2:

Пусть дано $latex P=(M_{2}(R),+,\cdot)$

$latex \begin{pmatrix} 1&1\\ 2&2\end{pmatrix} $$latex \begin{pmatrix} -1&1\\ 1&-1\end{pmatrix} $=$latex \begin{pmatrix} 1&1\\ 2&2\end{pmatrix} $$latex \begin{pmatrix} 1&-1\\ -1&1\end{pmatrix} $

Из равенства видно, что в  кольце $latex P$  присутствуют делители нуля. Как следствие этого, мы можем наблюдать невозможность сокращения обоих частей равенства, так как это приведет нас к неверному равенству, то есть в кольце $latex P$ не действует закон сокращения. Если же в кольце $latex P$ нет делителей нуля, то

$latex a\cdot b=a\cdot c, a\ne 0 \Rightarrow b=c$ — закон сокращения.

Литература:

Делители нуля

Тест


 

Простейшие задачи на определение структур группы, кольца, поля

Группа

Множество $G$ с бинарной алгебраической операцией $\ast$ называется группой, если выполняются следующие условия:

  1. Операция $\ast$ в $G$ ассоциативна: $a\ast (b\ast c)=(a\ast b)\ast c \forall a,b,c\in G$;
  2. В $G$ существует нейтральный элемент $\theta :a\ast\theta=\theta\ast a=a \forall a\in G;$
  3. Для каждого элемента $a\in G$ существует обратный ему элемент $a^{-1}\in G: a\ast a^{-1}=a^{-1}\ast a=\theta $.

Если операция коммутативна, то группа называется коммутативной, или абелевой. В противном случае группа называется некоммутативной.

Задача

Доказать, что множество рациональных чисел R является абелевой группой относительно операции сложения.

Спойлер

  1. Ассоциативность очевидна
    $\forall a,b,c\in R a+(b+c)=(a+b)+c$
  2. Нейтральным элементом является число 0.
    $ 0+a=a+0=a \forall a\in r$
  3. Для каждого элемента множества R существует обратные ему элемент, также принадлежащий множеству $R$ .
    $ a^{-1}=-a$
    $\forall a\in R a+(-a)=(-a)+a=\theta=0$

$\Rightarrow R$ является группой относительно операции сложения.
Проверим коммутативность:
$ \forall a,b\in R a+b=b+a$ — верно.
$\Rightarrow$Группа абелева.
Что и требовалось доказать

[свернуть]

Кольцо

Множество $K$ , на котором заданы две операции — сложение (+) и умножение $\cdot$, называется кольцом, если выполняются следующие условия:

  1. Относительно операции сложения множество $K$ — коммутативная группа, т.е:
    1. Операция сложения коммутативна: $a+b=b+a \forall a,b\in K;$
    2. Операция сложения ассоциативна:$ a+(b+c)=(a+b)+c \forall a,b,c\in K;$
    3. Существует нулевой элемент $\theta: a+\theta =\theta +a=a \forall a\in K;$
    4. для каждого элемента существует противоположный ему элемент $(-a)\in K: a+(-a)=(-a)+a=\theta;$
  2. Операция умножения в множестве $K$ ассоциативна:
    $a\cdot (b\cdot c)=(a\cdot b)\cdot c$$ \forall a,b,c\in K$
  3. Операции сложения и умножения связаны законами дистрибутивности:
    $(a+b)\cdot c=a\cdot c+b\cdot c c\cdot (a+b)=c\cdot a+c\cdot b \forall a,b,c\in K$

Если операция умножения коммутативна:$a\cdot b=b\cdot a$, то кольцо называется коммутативным, в противном случае кольцо называется некоммутативным. Если для операции умножения существует единичный элемент $e: a\cdot e=e\cdot a=a$, то говорят, что кольцо — есть кольцо с единицей.

Задача

Проверить яляется ли кольцом множество комплексных чисел.

Спойлер

    1. Коммутативность сложения
      $ (a+bi)+(c+di)=(a+c)+(b+d)i=(c+a)+(d+b)i=(c+di)+(a+bi)$ $ \forall (a+bi),(c+di)\in C$
    2. Ассоциативность сложения
      $ ((a+bi)+(c+di))+(e+fi)=((a+c)+(b+d)i)+(e+fi)=(a+c+e)+(b+d+f)i=(a+bi)+((c+e)+(d+f)i)=(a+bi)+((c+di)+(e+fi))$ $ \forall (a+bi),(c+di),(e+fi)\in C$
    3. Существование нейтрального элемента
      $ \forall (a+bi)\in C (a+bi)+(0+0i)=(a+bi)$
    4. Существование обратного элемента
      $ \forall (a+bi)\in C \exists (-a-bi)\in C:
      (a+bi)+(-a-bi)=(0+0i)$
  1. Ассоциативность умножения
    $ \forall (a+bi),(c+di),(e+fi)\in C
    (a+bi)\cdot ((c+di)\cdot (e+fi))=(a+bi)\cdot ((ce-df)+(cf+de)i)=(a\cdot (ce-df)-b\cdot (cf+de))+(a\cdot (cf+de)+b\cdot (ce-df))i)=(ace-adf-bcf-bde)+(acf+ade+bce-bdf)i=(e\cdot (ac-bd)-f\cdot (ad+bc))+(e\cdot (ad+bc)+ f\cdot (ac-bd))=((a+bi)\cdot (c+di))\cdot (e+fi)$
  2. Дистрибутивность сложения и умножения
    $ \forall (a+bi),(c+di),(e+fi)\in C
    ((a+bi)+(c+di))\cdot (e+fi)=((a+c)+(b+d)i)\cdot (e+fi)=((a+c)e-(b+d)f)+((a+c)f+(b+d)e)i)=(ae+ce-bf-df)+(af+cf+be+de)i=(ae-bf)+(be+af)i+(ce-df)+(cf+de)i=(a+bi)\cdot (e+fi)+(c+di)\cdot (e+fi)$

Множество комплексных чисел является кольцом

[свернуть]

Поле

Полем называется кольцо $P$, обладающее следующими свойствами:
1. Обратимость умножения. $\forall a,b\in P$, где $a\neq 0$, уравнение $ax = b$ имеет (по крайней мере одно) решение, т. е. существует элемент такой, что $aq = b$.

2. $P$ содержит по крайней мере один элемент, отличный от нуля.

Источники

Структуры и подструктуры

Тест на тему «Простейшие задачи на определение структур группы, кольца, поля. Подструктуры.Циклическая группа. Симметрическая группа.». Прочтите все четыре статьи, прежде чем проходить тест.

Таблица лучших: Структуры и подструктуры

максимум из 7 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных