Формула конечных приращений Лагранжа

Теорема (Формула конечных приращений Лагранжа)

Если функция [latex] f\in C[a,b] [/latex] и дифференцируема на интервале [latex](a,b)[/latex], то [latex] \exists \theta \in (0,1)[/latex], [latex]f(a)-f(b)=f{}'(x_{0} )(b-a)[/latex], где [latex] x_{0}=a+ \theta(b-a)[/latex].

Геометрический смысл (для случая одной переменной): на дуге графика данной функции, соединяющей точки [latex](a,f(a))[/latex] и [latex](b,f(b))[/latex], найдется точка [latex](c,f(c))[/latex], (и, возможно, не одна), в которой касательная к графику функции параллельна хорде, соединяющей концы дуги.

RealyfinalVersion — копия

Доказательство

Рассмотрим функцию [latex]\varphi (x)=f(x)+\lambda x[/latex] где число [latex]\lambda[/latex] выберем таким, чтобы выполнялось условие [latex]\varphi (a)=\varphi (b)[/latex], т.е. [latex]f(a)+\lambda a=f(b)+\lambda b[/latex]. Отсюда находим: [latex]\lambda =-\frac{f(b)-f(a)}{b-a}[/latex].

Так как функция [latex]\varphi (x)[/latex] непрерывна на отрезке [latex][a,b][/latex], дифференцируется на интервале [latex](a,b)[/latex] и принимает равные значения на концах этого интервала то, по теореме Ролля, существует точка [latex]x_{0}\in (a,b)[/latex] такая, что [latex]\varphi{}'(x_{0})=f{}'(x_{0})+\lambda =0[/latex]. Отсюда получаем, что [latex]f{}'(x_{0})=\frac{f(b)-f(a)}{b-a} [/latex], или [latex]f(b)-f(a)=f{}'(x_{0})(b-a). [/latex] [latex]\square [/latex]

[spoilergroup]

Спойлер

Доказать, что [latex]\ln (1+x)\leqslant x[/latex], [latex]x>0[/latex] (*),
[latex]\left | \arctan x_{2} -\arctan x_{1} \right |\leqslant \left | x_{2}-x_{1} \right |[/latex], [latex]x_{1}\in \mathbb{R}[/latex], [latex]x_{2}\in \mathbb{R}[/latex]. (**)
а) Применяя теорему Лагранжа к функции [latex]f(x)=\ln (1+x)[/latex] на отрезке [latex][0,x][/latex], где [latex]x>0[/latex], получаем [latex]\ln(1+x)=\frac{1}{1+\xi }x[/latex], откуда следует неравенство (*), так как [latex]0<\xi<x[/latex].
б) По теореме Лагранжа для функции [latex]\arctan x[/latex] на отрезке с концами [latex]x_{1}[/latex] и [latex]x_{2}[/latex] находим
$$\arctan x_{2} — \arctan x_{1}=\frac{1}{1+\xi ^{2}}(x_{2}-x_{1}),$$
откуда получаем [latex]\left | \arctan x_{2}-\arctan x_{1} \right |=\frac{\left | x_{2}-x_{1} \right |}{1+\xi ^{2}}\leqslant \left | x_{2}-x_{1} \right |[/latex], так как [latex]0<\frac{1}{1+\xi^{2}}\leqslant 1[/latex].
Полагая в соотношении (**) [latex]x_{2}=x[/latex], [latex]x_{1}=0[/latex], получаем
[latex]\left | \arctan x \right |\leqslant \left | x \right |[/latex], [latex]x\in \mathbb{R}[/latex],
и, в часности,
[latex]0\leqslant \arctan x\leqslant x[/latex], [latex]x\geqslant 0[/latex].

[свернуть]

[/spoilergroup]

Использованная литература

Рекомендованная литература

Тест

Формула конечных приращений Лагранжа

Теста на знание формулы конечных приращений Лагранжа

Таблица лучших: Формула конечных приращений Лагранжа

максимум из 10 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Геометрический смысл формулы Лагранжа и её следствия

Сама теорема здесь.

Формулировка

[latex]\frac{f(b)-f(a)}{b-a}[/latex] — угловой коэффициент секущей, которая проходит через точки A(a,f(a)) и B(b,f(b)) графика функции y=f(x), а [latex]f'(\xi )[/latex] — угловой коэффициент касательной к графику в точке [latex](\xi ,f(\xi ))[/latex]. Поэтому теорема Лагранжа имеет следующую геометрическую интерпретацию: существует значение [latex]\xi \in (a,b)[/latex] такое, что касательная к графику функции y=f(x) в точке [latex](\xi ,f(\xi ))[/latex] параллельна секущей, соединяющей точки [latex]A(a,f(a))[/latex] и [latex]B(b,f(b)).[/latex]

  1. Следствие

    Если а дифференцируема на (a,b) и f'(x)=0 [latex]\forall x\in (a,b)[/latex] то f(x)=c=const на (a,b)

    Его доказательство:

    Возьмем [latex]\forall x\in (a,b)[/latex] и зафиксируем [latex][x,x_{0}]\subset (a,b)[/latex] ([latex][x_{0},x]\subset (a,b)[/latex]) Применим формулу конечных приращений Лагранжа на отрезке [latex][x,x_{0}][/latex]
    [latex]f(x)-f(x_{0})=f'(\xi )(x-x_{0})\Rightarrow f(x)=f(x_{0})[/latex], [latex]\forall x\in (a,b)[/latex].

  2. Следствие

    Если функция дифференцируема на (a,b) и f'(x)=k=const. [latex]\forall x\in (a,b)\Rightarrow f(x)=(kx+b)[/latex] — линейная функция

    Его доказательство:

    Применяя теорему Лагранжа к функции f а на отрезке [latex][a,x]\subset [a,b][/latex]: [latex]f(x)-f(a)=f'(\xi )(x-a)[/latex]. [latex]f(x)-f(a)=k(x-a)[/latex]. [latex]f(x)=kx+b. b=f(a)-ka[/latex]

lag

  1. Следствие

    Пусть [latex]\varphi (x)[/latex]

    1. Непрерывна на [a,b];
    2. Дифференцируема на (a,b) (кроме быть может некоторой точки [latex]x_{0}\in (a,b)[/latex])
    3. [latex]\exists \lim_{x\rightarrow x_{0}}\varphi ‘(x)[/latex]

    Тогда [latex]\exists \varphi ‘(x_{0}),[/latex] причем эта производная равна [latex]\lim_{x\rightarrow x_{0}}\varphi ‘(x)[/latex]

    Его доказательство:

    Пусть [latex]\lim_{x\rightarrow x_{0}}\varphi ‘(x)[/latex]=A, a<x<b, [latex]x\neq x_{0}.[/latex] По Теореме Лагранжа[latex]\varphi (x)-\varphi (x_{0})=\varphi ‘(\xi )(x-x_{0}),[/latex] где [latex]\xi \in (x_{0},x)\cup \xi \in (x,x_{0})\Rightarrow [/latex] [latex]\varphi ‘(\xi )=\frac{\varphi (x)-\varphi (x_{0})}{x-x_{0}}.[/latex] (Будем считать, что функция однозначна) [latex]\xi =\xi (x): x_{0}<\xi (x)<x\Rightarrow \lim_{x\rightarrow x_{0}}\xi (x)=x_{0}\Rightarrow \lim_{x\rightarrow x_{0}}\varphi ‘(\xi)=A=\lim_{x\rightarrow x_{0}}\frac{\varphi (x)-\varphi (x_{0})}{x-x_{0}}=\varphi ‘(x_{0})[/latex]

Пример

Найти функцию [latex]\Theta =\Theta (x_{0},\Delta x)[/latex] такую, что [latex]f(x_{0}+\Delta x)-f(x_{0})=\Delta xf(x_{0}+\Theta \Delta x),[/latex] если [latex]f(x)=ax^{2}+bx+c, a\neq 0[/latex]

Спойлер

[latex]a(x_{0}+\Delta x)^{2}+b(x_{0}+\Delta x)+c-(ax^{2}+bx+c)=\Delta x(2a(x_{0}+\Theta \Delta x)+b)[/latex]
, откуда [latex]\Theta =\frac{1}{2}[/latex]

[свернуть]

Геометрический смысл формулы Лагранжа и её следствия

Этот тест разработан для лучшего усвоения знаний

Литература

Теорема Коши (обобщенная формула конечных приращений)

Формулировка

Если функции [latex]f\left( x \right)[/latex] и [latex]g\left(x\right)[/latex] непрерывны на отрезке [latex][a,b][/latex], дифференцируемы на интервале (a,b), причем [latex]g'(x)\neq 0[/latex] во всех точках этого интервала, то найдется хотя бы одна точка [latex]\xi \in (a,b)[/latex] такая, что [latex]\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)}[/latex].

Доказательство

Рассмотрим функцию [latex]\varphi(x)=f(x)+\lambda g(x)[/latex], где число [latex]\lambda[/latex] выберем таким, чтобы выполнялось равенство [latex]\varphi (a)=\varphi (b)[/latex], которое равносильно следующему:
[latex]f(b)-f(a)+\lambda (g(b)-g(a))=0[/latex].

Заметим, что [latex]g(b)\neq g(a)[/latex], так как в противном случае согласно Теореме Ролля существовала бы точка [latex]c\in (a,b)[/latex] такая, что $latex g'(c)=0$ вопреки условиям данной теоремы. Из равенства [latex]f(b)-f(a)+\lambda (g(b)-g(a))=0[/latex] следует, что [latex]\lambda =-\frac{f(b)-f(a)}{g(b)-g(a)}[/latex].

Так как функция [latex]\varphi [/latex] при любом [latex]\lambda[/latex] непрерывна на отрезке $latex [a,b]$ и дифференцируема на интервале [latex](a,b)[/latex], а при значении [latex]\lambda[/latex], определяемом предыдущей формулой, принимает равные значения в точках $latex a$ и $latex b$, то по теореме Ролля существует точка [latex]\xi \in (a,b)[/latex] такая, что [latex]\varphi ‘(\xi )=0[/latex], т.е. [latex]f'(\xi )+\lambda g'(\xi )=0[/latex], откуда [latex]\frac{f'(\xi )}{g'(\xi )}=-\lambda[/latex]. Из этого равенства и формулы [latex]\lambda =-\frac{f(b)-f(a)}{g(b)-g(a)}[/latex] следует [latex]\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)}[/latex].

  1. Замечание. Теорема Лагранжа — частный случай теоремы Коши [latex](g(x)=x)[/latex].
  2. Замечание. Теорему Коши нельзя получить используя теорему Лагранжа отдельно к числителю и к знаменателю.

Теорема Коши (обобщенная формула конечных приращений)

Правильно ли вы поняли обобщенную теорему Лагранжа?

Литература

  • Конспект лекций Лысенко З.М.
  • Тер-Крикоров А.М., Шабунин М.И., Курс математического анализа, физмат-лит, 2001. стр.157-158