4.8 Обратная функция

\usepackage{amsfonts}

Функция $f,$ действующая из $X$ в $Y,$ называется биективной, если она взаимно однозначна и ее область значений совпадает с множеством $Y.$ Это означает, что для каждого $y \in Y$ существует единственный $x \in X,$ такой, что $y = f\left(x\right).$

Пусть функция $f: X \rightarrow Y$ биективна. Тогда каждому $y \in Y$ можно поставить в соответствие единственный $x \in X,$ такой, что $y = f\left(x\right).$ Тем самым мы получим новую функцию, действующую из $Y$ в $X.$ Такая функция называется обратной к функции $f$ и обозначается $f^{−1}.$ Например, $f\left(x\right) = x^3$ действует из $\mathbb {R}$ в $\mathbb {R}$ и биективна. Тогда $f^{−1}\left(y\right) = \sqrt[3]{y}.$ Другая функция $f\left(x\right) = x^2,$ действующая из $\mathbb {R}$ в $\left[0, +\infty\right),$ не является биективной, и поэтому нельзя говорить об обратной функции. Если же мы рассмотрим функцию $f_1: \left[0, +\infty\right) \rightarrow \left[0, +\infty\right),$ действующую по правилу $f_1\left(x\right) = x^2,$ то такая функция биективна, и поэтому у нее есть обратная $f^{−1} \left(y\right) = \sqrt{y}.$ В этом примере мы пользуемся понятием сужения, т. е. функцию мы рассматриваем не на всей возможной области определения, где определяющая функцию формула имеет смысл, а лишь на части этой области. Дадим определение.

Определение. Пусть функция $f: X \rightarrow Y,$ и множество $A \subset X.$ Каждой точке $x \in A$ поставим в соответствие $y = f \left(x\right) \in Y.$ Тогда получим функцию, заданную на множестве $A,$ которую будем называть сужением функции $f$ на множество $A,$ и будем обозначать это сужение $f\mid A.$

В рассмотренном выше примере $f\left(x\right) = x^2$ функция не была взаимно однозначной на $\mathbb {R}.$ В то же время сужение $f_1 = f\mid \left[0, +\infty\right)$ – взаимно однозначная функция, и поэтому существует обратная функция.

В этом параграфе мы будем заниматься вопросом существования и свойствами обратной функции. Если обратную функцию удается явно выразить (как в рассмотренных выше примерах), то свойства обратной функции могут быть изучены непосредственно. Однако это не всегда можно сделать. Например, функция $f \left(x\right) = x + \frac{1}{2} \sin x $ взаимно однозначна, но выражение обратной функции весьма затруднительно. Мы хотим исследовать свойства обратной функции $f^{−1},$ не зная ее явного выражения.

Пусть функция $f$ определена на $\left[a, b\right].$ Очевидно, что если $f$ строго монотонна на $\left[a, b\right],$ то она взаимно однозначна. Обратное утверждение не имеет места. Например, функция $$f\left(x\right) = \begin{cases} −x, \qquad −1 \leqslant x < 0, \\ x − 1, \qquad 0 \leqslant x \leqslant 1, \end{cases}$$ очевидно, взаимно однозначна, но не является монотонной на $\left[−1, 1\right].$ Можно, однако, доказать, что если функция $f$ взаимно однозначна и непрерывна, то она строго монотонна. Мы этого не будем делать.

В дальнейшем через $\langle\alpha, \beta\rangle$ будем обозначать отрезок с концами $\alpha$ и $\beta$ (при этом неравенство $\alpha < \beta$ не обязательно).

Теорема (об обратной функции). Пусть функция $f$ строго монотонна и непрерывна на отрезке $\left[a, b\right].$ Тогда обратная функция $f^{−1}$ строго монотонна и непрерывна на отрезке $\langle f\left(a\right), f\left(b\right)\rangle.$

Рассматриваем случай возрастающей $f.$ В силу теоремы Больцано – Коши, областью значений функции $f$ является отрезок $\left[f\left(a\right), f\left(b\right)\right].$ Так как $f$ взаимно однозначна на $\left[a, b\right],$ то существует функция $f^{−1},$ отображающая $\left[f\left(a\right), f\left(b\right)\right]$ на $\left[a, b\right].$ Обозначим $g\left(y\right) = f^{−1}\left(y\right).$ Покажем, что $g$ строго возрастает. Пусть $y^{\prime} < y^{\prime\prime}, x^{\prime} = g\left(y^{\prime}\right), x^{\prime\prime} = g \left(y^{\prime\prime}\right).$ Если $x^{\prime} \geqslant x^{\prime\prime},$ то $f \left(x^{\prime}\right) \geqslant f \left(x^{\prime\prime}\right)$ (в силу возрастания $f$), т. е. $y^{\prime} \geqslant y^{\prime\prime},$ что противоречит условию. Итак, получаем, что $x^{\prime} < x^{\prime\prime},$ т. е. условие $y^{\prime} < y^{\prime\prime}$ влечет $x^{\prime} < x^{\prime\prime}.$ Это и означает, что обратная функция $x = g\left(y\right)$ строго возрастает на $\left[f \left(a\right), f \left(b\right)\right].$

Областью значений обратной функции $g$ является отрезок $\left[a, b\right].$ В самом деле, каждое $x \in \left[a, b\right]$ является значением функции $g\left(y\right),$ где $y = f\left(x\right).$ Так как $g$ монотонна на $\left[f\left(a\right), f\left(b\right)\right]$ и ее областью значений является отрезок $\left[a, b\right],$ то, по теореме о непрерывности монотонной функции, функция $g$ непрерывна на отрезке $\left[f\left(a\right), f\left(b\right)\right].$

Пример 1. Арксинус. Функция $f\left(x\right) = \sin x \left(−\infty < x < +\infty\right)$ не является взаимно однозначной. Рассмотрим сужение этой функции на $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right].$ Это сужение – непрерывная и строго возрастающая функция. Следовательно, существует обратная функция, непрерывная и строго возрастающая.

Арксинусом называется функция, обратная к сужению функции $\sin x$ на $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right],$ и обозначается $\arcsin x.$ Она определена на $\left[−1, 1\right],$ имеет областью значений отрезок $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right],$ строго возрастает и непрерывна на $\left[−1, 1\right].$

Пример 2. Арккосинус. Функция $f\left(x\right) = \cos x \left(−\infty < x < +\infty\right)$ не является взаимно однозначной. Рассмотрим сужение этой функции на $\left[0, \pi\right].$ Это сужение – непрерывная и строго убывающая функция. Следовательно, существует обратная функция, непрерывная и строго убывающая.

Арккосинусом называется функция, обратная к сужению функции $\cos x$ на $\left[0, \pi\right],$ и обозначается $\arccos x.$ Она определена на $\left[−1, 1\right],$ имеет областью значений отрезок $\left[0, \pi\right],$ строго убывает и непрерывна на $\left[−1, 1\right].$

Пример 3. Арктангенс и арккотангенс. Арктангенсом называется функция, обратная к сужению функции $\text{tg } x$ на $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right),$ и обозначается $\text{arctg } x.$ Функция $\text{arctg } x$ непрерывна и строго возрастает на $\left(−\infty, +\infty\right),$ область ее значений – интервал $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$

Арккотангенсом называется функция, обратная к сужению функции $\text{ctg } x$ на $\left(0, \pi\right),$ и обозначается $\text{arcctg } x.$ Функция $\text{arcctg } x$ непрерывна и строго убывает на $\left(−\infty, +\infty\right),$ область ее значений – интервал $\left(0, \pi\right).$

Упражнение. Постройте графики определенных выше обратных тригонометрических функций $y = \arcsin x, y = \arccos x, y = \text{arctg } x$ и $y = \text{arcctg } x.$

Пример 4. Функция $f\left(x\right) = x^n \left(x \geqslant 0, n \in \mathbb {Z}\right)$ является взаимно однозначной. Следовательно, существует обратная функция $f^{-1}\left(x\right) = \sqrt[n]{x}.$ Можем увидеть пример графика данной функции и её обратной при $ n = 2m + 1 \left(m \in \mathbb {N}\right).$

Пример 5. $f: \mathbb {R} \rightarrow \mathbb {R}_+,$ функция $f\left(x\right) = a^x \left(a > 0, a \neq 1\right)$ является взаимно однозначной. Следовательно, существует обратная функция $f^{-1}\left(x\right) = \log_a x.$ Можем увидеть пример графика данной функции и её обратной при $a > 1.$

Обратная функция

Вы можете пройти данный тест, чтобы примерно оценить, насколько вы поняли тему «Обратная функция»

Условия монотонности функции в терминах производной

Теорема (критерий возрастания и убывания функции на интервале)

Для того чтобы дифференцируемая функция [latex] f(x)[/latex] на интервале [latex] (a;b)[/latex] была возрастающая, необходимо и достаточно, чтобы [latex]\forall x\in (a;b)[/latex] [latex] f'(x)\geq 0 [/latex].

Доказательство

Необходимость

  • Дано: [latex]f(x)[/latex] возрастает на интервале [latex](a;b)[/latex].
  • Требуется доказать: [latex] f'(x)\geq 0[/latex].

Пусть [latex]x_{0}[/latex] произвольная точка на интервале [latex] (a;b)[/latex], пусть [latex]x>x_{0} [/latex], тогда в силу монотонного возрастания функции [latex] f(x)\geq f(x_{0})[/latex] для любого значения [latex] x[/latex] из интервала [latex] (a;b)[/latex], [latex] x\neq x_{0}[/latex] [latex]\Rightarrow [/latex]

 $latex \frac{f(x)-f(x_{0})}{x-x_{0}}>0. &s=1 $

По свойству сохранения знака предела:

$latex \lim\limits_{x\rightarrow x_{0}^{}}\frac{f(x)-f(x_{0})}{x-x_{0}}\geqslant 0, &s=1 $

а это и есть[latex] f'(x_{0})[/latex].

Достаточность

  • Дано: [latex] f'(x)\geq 0[/latex] .
  • Требуется доказать: [latex]f(x)[/latex] возрастает на интервале[latex](a;b)[/latex].

Пусть[latex] f'(x)\geq 0[/latex] [latex]\forall x\in (a;b)[/latex].
Выберем произвольные точки [latex] x_{1}[/latex] и [latex] x_{2}[/latex], принадлежащие интервалу [latex] (a;b)[/latex], и не ограничивая общности скажем, что [latex] x_{2}>x_{1}[/latex].
Применим к функции [latex]f [/latex] формулу Лагранжа о конечных приращениях:
[latex] f(x_{2})-f(x_{1})=f'(\xi)*(x_{2}-x_{1})\geq 0.[/latex] Из того что [latex] x_{2}>x_{1} => f(x_{2})\geq f(x_{1}) => [/latex]
Доказали нестрогое возрастание.

Теорема (достаточное условие строгой монотонности)

    1. [latex]\forall x\in (a;b)[/latex] [latex] f'(x)>0 \Rightarrow f [/latex] строго возрастает на [latex] (a;b)[/latex].
    2. [latex]\forall x\in (a;b)[/latex] [latex] f'(x)<0 \Rightarrow f [/latex] строго убывает на [latex] (a;b)[/latex].

Доказательство

Пусть [latex] x_{2}>x_{1} [/latex], применим формулу конечных приращений Лагранжа: [latex]f(x_{2})-f(x_{1})=f'(\xi)*(x_{2}-x_{1})>0[/latex], так как [latex]x_{2}>x_{1}[/latex] и [latex]f'(\xi)>0[/latex], то [latex]f(x_{2})<f(x_{1})[/latex].
Пусть [latex] x_{2}<x_{1} [/latex], применим формулу конечных приращений Лагранжа: [latex]f(x_{1})-f(x_{2})=f'(\xi)*(x_{1}-x_{2})>0[/latex], так как [latex]x_{2}<x_{1}[/latex] и [latex]f'(\xi)>0[/latex], то [latex]f(x_{2})<f(x_{1})[/latex].

Пример

Исследовать функцию [latex]f(x)=x^{3}-3x^{2}-9x+5[/latex] на возрастание и убывание.

Решение

  1. Функция [latex]f(x)=x^{3}-3x^{2}-9x+5[/latex] дифференцируема на [latex]R[/latex], [latex]f'(x)=3x^{2}-6x-9[/latex].
  2. Для определения промежутков возрастания и убывания функции решаем уравнение: [latex]x^{2}-2x-3=0[/latex]. Решениями уравнения являются точки: [latex]x=-1[/latex] и [latex]x=3[/latex], которые разбивают числовую прямую на три отрезка. Получаем:

    E-okr0

    [latex]x^{2}-2x-3>0 \Leftrightarrow x\in ( -\infty ;-1) \cup (3;+\infty)\Rightarrow f(x)[/latex] возрастает на отрезках [latex] x\in ( -\infty ;-1] \cup [3;+\infty)[/latex]
    [latex]x^{2}-2x-3<0\Leftrightarrow x\in \left ( -1;3 \right )\Rightarrow f(x)[/latex] убывает на отрезке [latex]x\in [-1 ;3][/latex].

  3. Выполним проверку
    Для проверки построим график этой функции.

    график

    Ответ:

    [latex]f(x)[/latex] возрастает на отрезках [latex] x\in ( -\infty ;-1] \cup [3;+\infty)[/latex].
    [latex]f(x)[/latex] убывает на отрезке [latex]x\in \left [ -1 ;3\right ][/latex].

  4. Источники:

    Тест по теме: условия монотонности функции в терминах производной

    Проверьте себя на знание теоретического и практического материала по теме: Условия монотонности функции в терминах производной.


    Таблица лучших: Тест по теме: условия монотонности функции в терминах производной

    максимум из 8 баллов
    Место Имя Записано Баллы Результат
    Таблица загружается
    Нет данных