16.1 Равномерная сходимость

Определение. Пусть на множестве $E$ задана последовательность функций $f_{n}\left(n=1,2…\right)$, сходящаяся на $E$ поточечно к функции $f$. Говорят, что последовательность {$f_{n}$} сходится равномерно к функции $f$ на множестве $E$, если для любого $\varepsilon > 0$ найдется такой номер $N$, зависящий только от $\varepsilon$ (и не зависящий от $x$), что для каждого $n \geq N$ справедливо неравенство $\mid f_{n}\left(x\right)- f\left(x\right)\mid < \varepsilon$.

Определение поточечной сходимости на множестве $E$ в кванторах можно записать следующим образом:
$$ \forall x \in E \; \forall\varepsilon > 0 \; \exists N = N\left(\varepsilon,x\right) : \forall n \geq N \mid f_{n}\left(x\right)- f\left(x\right)\mid < \varepsilon, $$ а равномерной сходимости — так: $$ \forall \varepsilon > 0 \; \exists N = N\left(\varepsilon\right) : \forall n \geq N \; \forall x \in E \mid f_{n}\left(x\right)- f\left(x\right)\mid < \varepsilon.$$ В определении поточечной сходимости номер $N$ зависит, вообще говоря, от $\varepsilon$ и от $x$, а в определении равномерной сходимости $N$ зависит только от $\varepsilon$ и не зависит от $x$. Иначе говоря, поточечная сходимость будет равномерной, если для заданного $\varepsilon > 0 $ номер $N$ можно подобрать так, чтобы он был пригоден сразу для всех $x \in E$.

Теперь видно, что свойство равномерной сходимости не слабее, чем свойство поточечной сходимости, т. е. из равномерной сходимости следует поточечная сходимость. Обратное неверно. Может оказаться, что для каждого $\varepsilon > 0$ и для $x \in E$ найдется номер $N = N \left(\varepsilon,x\right)$, но для всех сразу $x \in E$ номер $N$, не зависящий от $x$, может и не существовать. Приведем

Пример 1. Пусть $f_{n}(x) = x^{n} (x \in E \equiv \left[0,1\right])$. Мы уже видели, что $$f(x) = \lim_{n\to\infty} f_{n}(x) = \begin{cases}0, & 0\leq x < 1, \\1, & x = 1.\end{cases}$$ Если бы последовательность {$x^{n}$} сходилась к функции $f$ равномерно, то неравенство $\mid x^{n} — f(x)\mid < \varepsilon$ при достаточно больших $n \; (n\geq N(\varepsilon))$ должно было быть выполненным сразу для всех $x \in E$. Но это не так, поскольку при фиксированном $n$ имеем $\lim_{x\to1-0} x^{n} = 1 $, так что в любой левой полуокрестности точки $x_{0}=1$ найдется такая точка $x_{1} \frac{1}{2}$. Поэтому если мы возьмем $\varepsilon_{0} > \frac{1}{2}$, то получим неравенство $\mid x_1^n — 0\mid\geq \varepsilon_{0} $. Окончательно имеем $$\exists \varepsilon_{0} (\varepsilon_{0} = \frac{1}{2}) : \forall N \; \exists n \geq N (n = N) \; \exists x_{1} =$$ $$= x_{1}(\varepsilon, n) \in E : \mid f_{n}(x_{1}) — f(x_{1})\mid \geq \varepsilon_{0}$$ Это означает, что данная последовательность не является равномерно сходящейся на множестве $E$.

В этом примере «плохие» точки $x_{1}$, т.е. такие, в которых выполнено неравенство $\mid f_{n}(x_{1}) — f(x_{1})\mid \geq \varepsilon_{0}$, находится вблизи точки $x_{0}=1$. Если же мы отделимся от $x_{0}$, т.е. рассмотрим последовательность ${x^{n}}$ на множестве $E_{\delta}=\left[0,1 — \delta\right]$, где $\delta > 0$ — произвольное число, то сходимость данной последовательности к функции $f(x)\equiv0$ на множестве $E_{\delta}$ уже будет равномерной. Действительно, в этом случае $$\mid f_{n}(x) — f(x) \mid = x^{n} \leq (1 — \delta)^{n} < \varepsilon \; \; \; (0\leq x \leq 1-\delta), $$ если только $n \geq N(\varepsilon), $ где $N(\varepsilon) = \left[\frac{\ln \varepsilon}{\ln (1-\delta)}\right] + 1 $ не зависит от $x \in E_{\delta}$.

Пример 2. Для последовательности функций $f_{n}(x) = \frac{nx}{1+n^{2}x^{2}} \; \; (x \in E\equiv \mathbb{R})$ ранее мы показали, что $$f(x) = \lim_{x\to\infty} \frac{nx}{1+n^{2}x^{2}} = 0 \; \; \; (x \in \mathbb{R}).$$ Поэтому $\mid f_{n}(x) — f(x)\mid \rightarrow 0 \; \; \; (n \rightarrow \infty )$ при каждом фиксированном $x \in \mathbb{R}$. Однако при фиксированном $n$ наибольшее значение функция $f_{n}(x) = \frac{nx}{1+n^{2}x^{2}}$ достигает в точке $x_{n} = \frac{1}{n}$ и это значение равно $f_{n}(\frac{1}{n}) = \frac{1}{2}$. Таким образом, для $\varepsilon_{0}=\frac{1}{2}$ неравенство $\mid f_{n}(x)-f(x)\mid < \varepsilon_{0}$ не может быть выполненным сразу для всех $x \in \mathbb{R}$. Значит, последовательность {$f_{n}$} сходится к функции $f \equiv 0$ на $\mathbb{R}$, но неравномерно, т.е. $$\exists \varepsilon_{0} ( \varepsilon_{0} = \frac{1}{2}) : \forall N \; \exists n\geq N (n=N) \;
\exists x_{1} (x_{1} = \frac{1}{n}) : \mid f_{n}(x_{1}) — f(x_{1})\mid \geq \varepsilon_{0}.$$

Если же зафиксировать число $\delta > 0 $, то нетрудно показать, что на множестве $E_{\delta} = \left[\delta,+\infty\right)$ последовательность функций $f_{n}(x) = \frac{nx}{1+n^{2}x^{2}}$ сходится равномерно. Действительно, неравенство $$\mid f_{n}(x) — f(x)\mid = \frac{nx}{1+n^{2}x^{2}} \leq \frac{1}{nx} \leq \frac{1}{n\delta} < \varepsilon \; \; \; (x \in E_{\delta})$$ выполнено, если только $n \geq N(\varepsilon)$, где $ N(\varepsilon) = \left[\frac{1}{\varepsilon\delta}\right] + 1 $ не зависит от $x \in E_{\delta}$

Геометрический смысл равномерной сходимости состоит в том, что начиная с номера $N$ графики функций $f_{n}(x)$ расположены в $\varepsilon$-полосе графика функции $f$.

Равномерная сходимость ряда определяется как равномерная сходимость последовательности его частичных сумм.

Определение. Пусть на множестве $E$ задана последовательность функций $\left\{u_{n}\right\}$. Ряд $\sum_\left(n=1\right)^\infty u_{n}$ называется равномерно сходящимся на множестве $E$, если он сходится поточечно на $E$ и последовательность его частичных сумм равномерно сходится к сумме ряда на множестве $E$.

Другими словами, определение равномерной сходимости ряда $\sum_\left(n=1\right)^\infty u_{n}$, сходящегося к функции $f$ на множестве $E$, можно сформулировать следующим образом. Обозначим через $S_{n}(x) = \sum_\left(k=1\right)^n u_{k}(x)$ частичные суммы ряда $ \sum_\left(n=1\right)^\infty u_{n}(x), r_{n}(x) = \sum_\left(k = n+1\right)^\infty u_{k}(x)$ — остаток после $n$-го слагаемого. Тогда $S_{n}(x) + r_{n}(x) = f(x),$ а равномерная сходимость ряда означает, что для любого $\varepsilon > 0$ найдется такой номер $N$ (зависящий только от $\varepsilon$), что для всех $n \geq N$ и для всех $x \in E$ справедливо неравенство $\mid S_{n}(x) — f(x)\mid < \varepsilon$. Но так как $\mid S_{n}(x) — f(x)\mid = \mid r_n(x)\mid$, то получаем $$\forall \varepsilon > 0 \; \exists N : \forall n \geq N \; \forall x \in E \;\; \mid r_{n}(x)\mid < \varepsilon. $$ Это в свою очередь означает, что остаток ряда равномерно стремится к нулю. Таким образом, получили следующее эквивалентное определение равномерной сходимости ряда.

Ряд $\sum_\left(n=1\right)^\infty u_{n}(x)$ называется равномерно сходящимся на множестве $E$, если последовательность его остатков после $n$-го слагаемого {$r_{n}$} равномерно сходится к нулю на множестве $E$.

Это определение более выгодно по сравнению с предыдущим тем, что оно использует лишь слагаемые исходного ряда и не использует сумму самого ряда $f(x)=\sum_\left(n=1\right)^\infty u_{n}(x)$.

Пример 1. Ряд $\sum_\left(n=1\right)^\infty x^{n}$ сходится на интервале $(-1,1)$ т.к. он представляет собой сумму геометрической прогрессии со знаменателем $x, \mid x \mid < 1 $. Исследуем его на равномерную сходимость. Для этого рассмотрим остаток $r_{n}(x) = \sum_\left(k =n+1\right)^\infty x^{k} = \frac{x^{n+1}}{1-x}$. При фиксированном $x$ и $n \rightarrow \infty$ имеем $r_{n}(x) \rightarrow 0$. Это означает, что данный ряд сходится при каждом $x$, т.е. поточечно. Если же зафиксировать $n$ к $1-0$, то получим, что $\frac{x^{n+1}}{1-x} \rightarrow +\infty$, т.е. если $x$ близок к $1$, то $r_{n}(x)$ принимает большие значения. Это означает, что неравенство $\mid r_{n}(x)\!\!\mid \; = \frac{\mid x\mid^{n+1}}{1-x} < \varepsilon$ сразу для все $x \in (-1,1)$, но неравномерно.

С другой стороны, на любом отрезке $\left[-q,q\right]$, где $0<q<1$, ряд $\sum_\left(n=1\right)^\infty x^{n}$ сходится равномерно. Действительно, в этом случае $$\mid r_{n}(x)\!\!\mid = \; \mid\sum_\left(k=n+1\right)^\infty x^{n}\!\!\mid = \; \mid\frac{x^{n+1}}{1-x} \mid \; \leq \frac{q^{n+1}}{1-q}, \; \; \; (x \in \left[-q,q\right]).$$ Отсюда следует, что последовательность {$r_{n}(x)$} равномерно сходится к нулю на $[-q,q]$, т.е. данный ряд равномерно сходится на $[-q,q]$.

Пример 2. Рассмотрим ряд $\sum_\left(n=0\right)^\infty \frac{x^{2}}{(1+x^{2})^{n}}$. Имеем $$r_{n}(x) = \begin{cases}\frac{x^{2}}{(1+x^{2})^{n}}, & x \neq 0\\0, & x = 0.\end{cases}$$ Если $x$ фиксировано, то $r_{n}(x) \rightarrow 0$ при $n \rightarrow \infty$. Это означает, что ряд является сходящимся при любом $x \in \mathbb{R}$, т.е. он сходится поточечно. Если зафиксируем $n$, то при стремлении $x$ к нулю получаем, что $r_{n}(x) \rightarrow 1$, а это означает, что неравенство $\mid r_{n}(x)\!\! \mid \; = \frac{1}{(1+x^{2})^{n}} < \varepsilon$ при $0 <\varepsilon< 1$ не может выполняться сразу для всех $x \in \mathbb{R}$, каким бы большим номер $n$ мы ни взяли. Таким образом, $r_{n}(x)\rightarrow 0 \; (n \rightarrow \infty)$, но неравномерно. Следовательно, данный ряд сходится на $\mathbb{R}$ неравномерно.

Замечание. Пусть задан ряд $$\sum_\left(n=1\right)^\infty u_{n}(x) \; \; \; (x \in E).\qquad
(16.2)$$ Рассмотри величины $$\mu_{n}=\sup_{x\in E} \mid \sum_\left(k=n+1\right)^\infty u_{k}(x)\mid = \sup_{x\in E} \mid r_{n}(x)\mid.$$ Тогда определение равномерной сходимости ряда (16.2) на множестве $E$ можно сформулировать следующим образом.

Ряд (16.2) сходится равномерно на множестве $E$, если $\lim_{n\to\infty} \mu_{n} = 0.$

Действительно, если $\mu_{n}\rightarrow 0 \; (n \rightarrow \infty)$, то для любого $\varepsilon > 0$ найдется такой номер $N$, что для всех $n \geq N$ справедливо неравенство $\mu_{n} < \varepsilon$, т.е. для всех $x \in E$ справедливо неравенство $\mid r_{n}(x)\mid < \varepsilon$, а значит ряд (16.2) сходится равномерно. Обратно, если $r_{n}(x)$ равномерно сходится к нулю, то для всех $x \in E$ справедливо неравенство $\mid r_{n}(x)\mid < \varepsilon$. Поэтому и $\mu_{n} = \sup_{x\in E} \mid r_{n}(x)\mid \leq \varepsilon$, т.е. $\mu_{n} \rightarrow 0$ при $n \rightarrow \infty$.

Пример 3. Исследовать на равномерную сходимость ряд $\sum_\left(n=1\right)^\infty \frac{(-1)^{n}}{x^{2}+n}$ на множестве $\mathbb{R}$

Данный ряд является рядом лейбницевского типа и поэтому, согласно теореме об оценке остатка ряда лейбницевского типа, $\mid r_{n}(x)\mid \leq \frac{1}{x^{2}+n+1}\leq \frac{1}{n+1}$. Таким образом, $\mu_{n}\leq \frac{1}{n+1} \rightarrow 0 \; \; (n\rightarrow \infty)$, и, следовательно, данный ряд сходится равномерно на $\mathbb{R}$.

Теорема(критерий Коши равномерной сходимости последовательности). Для того чтобы последовательность функций {$f_{n}$} равномерно сходилась на множестве $E$ к некоторой функции, необходимо и достаточно, чтобы для любого $\varepsilon > 0$ существовал такой номер $N$, зависящий только от $\varepsilon$, что для любых $n,m \geq N$ и для любого $x \in E$ было выполнено неравенство $\mid f_n(x)-f_m(x)\mid < \varepsilon$.

Необходимость. Пусть последовательность {$f_n$} сходится к $f$ равномерно на $E$. Зададим $\varepsilon > 0 $. Тогда найдется такой номер $N$, что для все $n\geq N$ и для всех $x \in E$ справедливо неравенство $\mid f_n(x) — f(x)\mid < \frac{\varepsilon}{2}$. Если возьмем произвольные, $n,m \geq N$, то для любого $x \in E$ получим $$\mid f_n(x) — f_m(x)\mid \leq \mid f_n(x) — f(x)\mid + \mid f_m(x) — f(x)\mid < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$ т.е. выполнено условие теоремы (условие Коши).
Достаточность. Пусть выполнено условие Коши. Зафиксируем $x \in E$ и получим числовую последовательность {$f_n(x)$}, которая, согласно условию Коши, является фундаментальной и, следовательно, сходящейся. Обозначим ее предел через $f(x)$. Так как $x \ in E$ произвольное, то, проделав эту операцию для все $x \in E$, получим функцию $f(x)$. Покажем, что последовательность {$f_n(x)$} стремится к $f(x)$ равномерно на $E$. Зададим $\varepsilon > 0$. Тогда найдется такой номер $N$, что для всех $n,m\geq N$ и для любого $x \in E$ справедливо неравенство $\mid f_n(x)-f_m(x)\mid < \varepsilon$. Зафиксируем $n \geq N, x \in E$ и устремим $m\rightarrow \infty$. Тогда получим $\mid f_n(x)-f(x)\mid \leq \varepsilon.$ Это неравенство выполнено для любого $n \geq N$ и для всех $x \in E$, а это и означает, что последовательность {$f_n$} сходится к $f$ равномерно на $E$.

Доказанную теорему можно переформулировать для рядов следующим образом.

Теорема(критерий Коши равномерной сходимости ряда). Для того чтобы ряд $\sum_\left(n=1\right)^\infty u_n(x)$ равномерно сходился на множестве $E$, необходимо и достаточно, чтобы для любого $E > 0$ существовал такой номер $N$, зависящий только от $\varepsilon$, что для всех $n \geq N, p \in \mathbb{N}$ и для любого $x \in E$ выполнялось неравенство $\mid \sum_{k=n+1}^{n+p} u_k(x)\mid < \varepsilon$.

Эта теорема вытекает из предыдущей, если учесть, что равномерная сходимость ряда определяется как равномерная сходимость последовательности его частичных сумм.

Теорема (признак Вейерштрасса равномерной сходимости ряда). Пусть дан ряд $$ \sum_{n+1}^{\infty} u_n(x) \; \; \; (x \in E). \qquad (16.3)$$ Предположим, что существует числовая последовательность {$a_n$}, такая, что $\mid u_n(x)\mid \leq a_n \; \; \; (n=1,2…)$ для всех $x \in E$, и числовой ряд $\sum_{n=1}^\infty a_n$ сходится. Тогда ряд (16.3) сходится равномерно на $E$.

В силу условия теоремы, имеем $$\mid\sum_{k=n+1}^{n+p} u_k(x)\mid \leq \sum_{k=n+1}^{n+p} a_k \; \; \; (x \in E).$$ Так как ряд $\sum_{n=1}^\infty a_n$ сходится по условию, то, в силу критерия Коши для числовых рядов, для любого $\varepsilon > 0$ найдется такой номер $N$, что для всех $n \geq N$ и для любого $p \in \mathbb{N}$ справедливо неравенство $\sum_{k=n+1}^{n+p} a_k < \varepsilon$. Но тогда и неравенство $\mid\sum_{k=n+1}^{n+p} u_k(x) \mid < \varepsilon$ будет выполненным для всех $x \in E$, т.е. выполнено условие критерия Коши равномерной сходимости функционального ряда, в силу которого ряд (16.3) сходится равномерно на $E$.

Замечание 1. Признак Вейерштрасса является лишь достаточным условием равномерной сходимости функционального ряда. В самом деле, рассмотренный выше пример 3 ряда $\sum_{n=1}^{\infty} \frac{(-1)^n}{x^2+n}$ показывает, что этот ряд хотя и сходится равномерно на $\mathbb{R}$, но оценить сверху его слагаемые можно лишь слагаемыми расходящегося числового ряда $\sum_{n=1}^{\infty} \frac{1}{n}$

Замечание 2. Признак Вейерштрасса дает достаточное условие не только равномерной, но и абсолютной сходимости ряда. Это сразу следует из неравенства $$\sum_{k=n+1}^{n+p} \mid u_k(x)\mid \leq \sum_{k=n+1}^{n+p} a_k \; \; \; (x \in E).$$

Замечание 3. Признак Вейерштрасса заключается в том, что из сходимости ряда $\sum_{n=1}^{\infty} a_n $, где $a_n = \sup_{x \in E}\mid u_n(x)\mid$, следует равномерная (и абсолютная) сходимость ряда $\sum_{n=1}^\infty u_{n}(x)$ на множестве $E$.

Пример 4. Рассмотрим ряд $\sum_{n=1}^\infty \frac{x}{1+n^4x^2}$ на $\mathbb{R}$. Используя очевидное неравенство $2\mid\!\! a\mid \leq 1 + a^2$, находим мажорантный числовой ряд $$\mid \frac{x}{1+n^4x^2}\mid \leq \frac{1}{n^2} \frac{\mid n^2x\mid}{1+(n^2x)^2} \leq \frac{1}{2}\frac{1}{n^2}.$$ Поскольку числовой ряд $\sum_{n=1}^\infty \frac{1}{2}\frac{1}{n^2}$ сходится, то исходный функциональный ряд сходится равномерно на $\mathbb{R}$.

Пример 5. Ряд $\sum_{n=1}^\infty \frac{\cos {nx}}{n^2}$ сходится равномерно на $\mathbb{R}$, поскольку $\mid \frac{\cos {nx}}{n^2}\mid \leq \frac{1}{n^2}$ и числовой ряд $\sum_{n=1}^\infty \frac{1}{n^2}$ сходится.

Теорема(признак Абеля равномерной сходимости) Пусть на множестве $E$ заданы две функциональные последовательности {$a_n(x)$} и {$b_n(x)$}, такие, что при каждом $x \in E$ числовая последовательность {$a_n(x)$} монотонна, функции $a_n(x)$ ограничены в совокупности, т.е. существует такое $M$, что $\mid a_n(x)\mid \leq M \;\;\; (x \in E, n = 1,2,…)$, а ряд $\sum_{n=1}^\infty b_n(x)$ сходится равномерно на $E$. Тогда ряд $\sum_{n=1}^\infty a_n(x) b_n(x)$ сходится равномерно на $E$.

Теорема(признак Дирихле равномерной сходимости). Пусть на множестве $E$ заданы две последовательности функций {$a_n(x)$} и {$b_n(x)$}, такие, что при каждом $x \in E$ числовая последовательность {$a_n(x)$} монотонна, функциональная последовательность {$a_n(x)$} равномерно сходится к нулю на $E$, а частичные суммы ряда $\sum_{n=1}^\infty b_n(x)$ ограничены в совокупности на $E$, т.е. существует такое число $M$, что $\mid\sum_{k=1}^n b_k(x)\mid \leq M (x \in E, n = 1,2,…)$. Тогда ряд $\sum_{n=1}^\infty a_n(x) b_n(x)$ сходится равномерно на $E$.

Доказательства признаков Абеля и Дирихле легко провести, основываясь на критерии Коши и применяя преобразование Абеля(точно так же, как это было сделано при доказательстве признаков Абеля и Дирихле сходимости числовых рядов). Рекомендуется провести эти доказательства самостоятельно.

Пример 6. Рассмотрим ряды вида $\sum_{n=1}^\infty a_n(x) \cos nx $ и $\sum_{n=1}^\infty a_n(x) \sin nx$, где последовательность чисел $a_n$ монотонно стремится к нулю. К ряду $\sum_{n=1}^\infty a_n(x) \cos nx $ применим признак Дирихле. Для этого рассмотрим суммы $S_n(x)=\sum_{k=1}^n \cos kx$. Имеем $$2\sin \frac{x}{2} S_n(x) =\sum_{k=1}^n 2\sin \frac{x}{2} \cos kx=$$ $$=\sin \frac{3x}{2} — \sin \frac{x}{2} + \sin \frac{5x}{2} — \sin \frac{3x}{2} + … + \sin (n+ \frac{1}{2})x — \sin (n — \frac{1}{2})x =$$ $$= \sin (n+ \frac{1}{2})x — \sin \frac{x}{2}.$$ Поэтому $$S_n(x) = \frac{\sin (n + \frac{1}{2})x}{2\sin \frac{x}{2}} — \frac{1}{2} \;\;\; (0 < x <2\pi), \;\;\;\; \mid S_n(x)\mid \leq \frac{1}{2} + \frac{1}{2\mid \sin \frac{x}{2}\mid}.$$ Если $x \rightarrow 0$, то $S_n(x) \rightarrow n$, так что в окрестности нуля нарушается равномерная ограниченность сумм $S_n(x)$. Если же $\delta \leq x \leq 2\pi — \delta$, где $0 < \delta < \pi$, то $\mid S_n(x)\mid \leq \frac{1}{2} + \frac{1}{2 \sin \frac{\delta}{2}}$ и поэтому $\left[ \delta, 2\pi — \delta\right]$ выполнены все условия признака Дирихле, в силу которого ряд $\sum_{n=1}^\infty a_n \cos {nx}$ сходится равномерно на $\left[ \delta, 2\pi — \delta\right]$. На всем интервале $(0,2\pi)$ признак Дирихле неприменим, но это еще не означает, что ряд сходится неравномерно, поскольку признак Дирихле — лишь достаточное условие равномерной сходимости ряда.

Покажите самостоятельно, что ряд $\sum_{n=1}^\infty a_n \sin {nx}$, где последовательность {$a_n$} монотонно убывает к нулю, сходится равномерно на $\left[ \delta, 2\pi — \delta\right]$, где произвольное $0 < \delta < \pi$. Для этого полезно использовать равенство $$ \sum_{k=1}^n \sin kx = \frac{1}{2 \sin \frac{x}{2}} \sum_{k=1}^n 2 \sin \frac{x}{2} \sin kx = $$ $$ = \frac{1}{2 \sin \frac{x}{2}} \sum_{k=1}^n [\cos (k — \frac{1}{2})x — \cos (k + \frac{1}{2})x] = $$ $$ =\frac{1}{2 \sin \frac{x}{2}} [\cos \frac{x}{2} — \cos(n+\frac{1}{2})x] \;\;\; (0 < x < 2\pi)$$ и применить признак Дирихле.

Примеры решений задач

  1. Исследовать на равномерную сходимость на интервале $(-\infty, +\infty)$ ряд $\sum_{n=1}^{\infty} \frac{nx}{1+n^5x^2}$.
Решение

Удобно применить признак Вейерштрасса, так как несложно подобрать мажоранту для ряда. Найдем максимум общего члена ряда: $$\frac{\text{d}}{\text{d}x}(\frac{nx}{1+n^5x^2})= n\frac{1-x^2n^5}{(1+x^2n^5)^2} = 0 \Rightarrow x_0 = \frac{1}{n^{\frac{5}{2}}}.$$ Следовательно, $$\mid\frac{nx}{1+n^5x^2}\mid \leq \frac{1}{2n^{\frac{3}{2}}}.$$ Мажорирующий ряд $\sum_{n=1}^\infty \frac{1}{2n^{\frac{3}{2}}}$ сходится. Поэтому исходный ряд сходится равномерно.

[свернуть]

Исследовать на равномерную сходимость на отрезке  $[0,2\pi]$ ряд $\sum_{n=1}^{+\infty} = \frac{\sin nx}{n}$ .

Решение

На данном отрезке частичные суммы вспомогательного ряда не будут ограничены. Применим критерий Коши. Выберем $m=2n, x_0 = \frac{1}{n}$, тогда $$ \mid \frac{\sin \frac{n+1}{n}}{n+1} + … + \frac{\sin 2}{2n}\mid \geq \frac{\sin 1}{n+1} + … + \frac{\sin 1}{2n} \geq \frac{1}{2}\sin 1 = \varepsilon_0.$$ Для ряда выполнился критерий Коши, следовательно, ряд не сходится равномерно.

[свернуть]

Равномерная сходимость

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме.

Список литературы


Тер-Крикоров А.М., Шабунин М.И. Курс Математического Анализа. 1997; с исправлениями 2001. ФИЗМАТЛИТ, 2001, стр.  384 — 407.

В.И.Коляда, А.А.Кореновский. Курс лекций по математическому анализу Т.2. Одесса, «Астропринт», 2010, стр. 32-41.

Г. М. Фихтенгольц «Курс дифференциального и интегрального исчисления» ФИЗМАТЛИТ, 1964 т.2, стр. 376-386.

5.8.1 Условия постоянства и монотонности функции

Условие постоянства. Функция f называется
тождественно постоянной на интервале I, если для любых двух точек $x’$,$x^{\prime\prime}$ справедливо равенство $f(x’)=f(x^{\prime\prime})$

Если функция постоянна на интервале $I$, то она дифференцируема в каждой точке этого интервала и ее производная равна нулю. Обратно, если в каждой точке некоторого интервала $I$ производная функции $f$ равна нулю, то $f$ постоянна на $I$. Последнее утверждение нами было получено как следствие из теоремы Лагранжа. Таким образом, функция $f$ постоянна на интервале $I$ тогда и только тогда, когда $f'(x)=0$  для любого $x\in I$.

Упражнение. Пусть непрерывная на интервале $I$ функция $f$ такова, что $f'(x)=0$ для всех $x\in I$ , за исключением, быть может, конечного числа точек. Докажите что $f$ постоянна на $I$.

Условия монотонности. Функция $f$ называется монотонно возрастающей (убывающей) на интервале $I$, если для любых $x,y\in I$ из условия $x$ < $y$ следует, что $f(x)$ ≤ $f(y)$.$ $ Если из условия $x$ < $y$ следует, что $f(x)$ < $f(y)$,то $f$ называется строго возрастающей. Если из $x$ <  $y$ следует $f(x)$ ≥ $f(y)$, то $f$ называется убывающей (невозрастающей), а если из $x$ < $y$ следует $f(x)$ > $f(y)$ , то $f$ называется строго убывающей.

Теорема 1. Пусть функция $f$ дифференцируема на интервале $I$. Для того, чтобы $f$ была возрастающей на $I$, необходимо и достаточно, чтобы для всех $x\in I$ выполнялось неравенство $f'(x) ≥ 0$.

Доказательство. Если $f$ возрастает то $\frac{f(x+h)-f(x)}h$ ≥ 0 для любого h > 0 и ,следовательно, $f'(x)$=limh→0+ $\frac{f(x+h)-f(x)}h ≥ 0$.
Обратно, если $x$ < $y$, то, по формуле конечных приращений(теореме Лагранжа), $f(y)-f(x)=f'(ξ)(y-x) ≥ 0$,где $x$< ξ < $y$ и $f'(ξ) ≥ 0$ по условию.

Замечание. Если $f$ непрерывна на отрезке $[a,b]$, дифференцируема на интервале $\lbrack a,b\rbrack$ и $f'(x) ≥ 0$ для всех $x\in(a,b)$, то $f $ монотонно возрастает на $\lbrack a,b\rbrack$ . Доказательство этого утверждения аналогично доказательству теоремы 1 и основано на применении теоремы Лагранжа.

Аналогично теореме 1 получаем что справедлива

Теорема 1a. Для того, чтобы дифференцируемая на интервале $I$ функция $f$ была убывающей, необходимо и достаточно, чтобы для всех $x\in I$ выполнялось неравенство $f'(x) ≤ 0 $.

Достаточное условие строгой монотонности дает:

Теорема 2. $ $ Пусть функция $f$ дифференцируема на интервале $I$ и $f'(x) > 0 $ для всех $x\in I$. Тогда $f$ строго возрастает на $I$.

По теореме Лагранжа, для $x < y$ имеем
$$f(y)-f(x)=f'(\xi)(x-y).$$

Замечание. Обратное утверждение неверно. Из строгой монотонности функции $f$ не следует, что $f'(x) > 0$. Например, функция  $f(x)=x^{3}$ строго возрастает на $(-1,1)$, но $f'(0)=0$.

Теорема 2 а. Пусть функция $f$ дифференцируема на интервале $I$ и $f'(x) < 0$ для всех $x\in I$. Тогда $f$ строго убывает на $I$.

Доказательство этой теоремы аналогично доказательству теоремы 2.

Пример. $ $ Докажем, что функция $f(x)=x-sin(x)$ строго возрастает на $(-\infty,+\infty)$. Имеем $f'(x)=1-cos(x) ≥ 0$ для всех $x\in(-\infty,+\infty)$. Отсюда уже следует, что $f$ возрастает на $(-\infty,+\infty)$. Осталось показать, что $f$ строго возрастает.Пусть $x < y$. Тогда
$$f(y)-f(x)=y-\sin\left(y\right)-x+\sin\left(x\right)=$$
$$=y-x-2\sin\left(\frac{y-x}2\right)\cos\left(\frac{y+x}2\right)\geq y-x-2\left|\sin\left(\frac{y-x}2\right)\right|$$

Так как $\left|\sin\left(t\right)\right|<\left|t\right|$ для всех $t\neq0$,то $$f(y)-f(x)\geq y-x-2\left|\sin\left(\frac{y-x}2\right)\right|>y-x-2\frac{y-x}2=0$$,
т.е. $f(y) > f(x)$.
Аналогично тому, как была доказана теорема 2 , легко показать что справедлива

Теорема 3. Пусть функция $f$ непрерывна на $\lbrack a,b\rbrack$, дифференцируема на $(a,b)$ и $f'(x) > 0$ для всех $x\in(a,b)$. Тогда $f$ строго возрастает на $\lbrack a,b\rbrack$.

Из этой теоремы легко получается

Следствие. $ $ Пусть непрерывная на интервале $I$ функция $f$ такова, что $f'(x) > 0$ всюду, за исключением конечного числа точек. Тогда $f$ строго возрастает на $\lbrack a,b\rbrack$.

Пример. $ $ Для функции $f(x)=\sin\left(\frac1x\right)-\frac1x$ ($x > 0$) имеем
$f'(x)=\cos\left(\frac1x\right)(-\frac1{x^2})-(-\frac1{x^2})=\frac1{x^2}(1-\cos\left(\frac1x\right))\geq0$

Значит, $f$ возрастает. Покажем, что $f$ строго возрастает. Пусть $x < y$. Тогда на отрезке $\lbrack x,y\rbrack$ не более, чем в конечном числе точек производная $f’$ обращается в нуль. В силу следствия, $f(x) < f(y)$.

Некоторые неравенства.

$$1.\frac2{\mathrm\pi}x<\sin\left(x\right)<x\;(0<x<\frac{\mathrm\pi}2)$$

Правое неравенство $\sin\left(x\right)<x\;(x>0)$ было доказано ранее. Докажем левое. Ранее было доказано что, $x<\tan\left(x\right)\;\;\;(0<x<\frac{\mathrm\pi}2)$. Поэтому для функции $\varphi(x)=\frac{\sin\left(x\right)}x$ при $0<x<\frac{\mathrm\pi}2$ имеем $\varphi(\frac{\mathrm\pi}2)=\frac2{\mathrm\pi}$,$\varphi'(x)=\frac{x\cos\left(x-\sin\left(x\right)\right)}{x^2}=\frac{\cos\left(x\right)}{x^2}\;(x-\tan\left(x\right))<0$. Значит функция $\varphi$ строго убывает на $\lbrack0,\frac{\mathrm\pi}2\rbrack$, т.е $\varphi(x)>\varphi(\frac{\mathrm\pi}2)=\frac2{\mathrm\pi}$, а это равносильно тому, что $\frac2{\mathrm\pi}x<\sin\left(x\right)$.

$$2.(1+x)^\alpha>1+\alpha x\;(x>0,\alpha>1)$$

Положим $\varphi(x)=\;(1+x)^\alpha-1-\alpha x$.$ $ Тогда $\varphi'(x)=\alpha\lbrack(1+x)^{\alpha-1}-1\rbrack>0$.$ $ Значит, функция $\varphi$ строго возрастает, и поэтому $\varphi(x)>\varphi(0)=0$ при $x>0$.$ $ Это равносильно требуемому неравенству.

$$3.(x+y)^p>x^p+y^p\;(0<p<1,\;x,y>0)$$

Требуемое неравенство равносильно такому $(1+t)^p<1+t^p$,где $t=\frac xy>0$. Положим $\varphi(t)=(1+t)^p$. Тогда $\varphi(0)=0$ и $\varphi'(t)=p\lbrack(1+t)^{p-1}-t^{p-1}\rbrack<0$. Значит ,функция $\varphi$ строго убывает.

$$4.(x+y)^{p}>x^{p}+y^{p}(p>1,x,y>0)$$

Доказательство этого неравенства аналогично доказательству предыдущего.

Примеры решения задач

Найти интервалы возрастания и убывания функции:

$1.f(x)=x^3-30x^2+225x+1$

Решение

Данная функция всюду дифференцируема,причем
$$f'(x)=3x^2-60x+225=3(x-5)(x-15)$$

Так как f'(x) > 0 при $x\in(-\infty,5)$ и $x\in(15,+\infty)$ и $f'(x) < 0$ при $x\in(5,15)$, то на интервалах $(-\infty,5)$ и $(15,+\infty)$ функция строго возрастает, а на интервале $(5,15)$ строго убывает.

$2.f(x)=\left\{\begin{array}{l}\frac1e,\;\;если\;\;x\;<\;e,\\\frac{\ln\left(x\right)}x,\;\;если\;\;x\;\;\geq\;e;\end{array}\right.$

Решение

Функция дифференцируема на всей числовой прямой, причем

$$f(x)=\left\{\begin{array}{l}0,\;\;если\;\;x<e,\\\frac{1-\ln\left(x\right)}{x^2},\;\;если\;x\geq e.\end{array}\right.$$

Так как $f'(x) ≤ 0$ при всех x, то данная функция является невозрастающей на всей числовой оси. На интервале $(-\infty,e)$ она постоянна, на интервале $(e,+\infty)$ строго убывает.

$3.f(x)=\cos\left(\frac{\mathrm\pi}x\right)$

Решение

Данная функция является четной, поэтому достаточно найти интервалы монотонности при $x > 0$. Решая при $x > 0$ неравенство

$$f'(x)=\frac{\mathrm\pi}{x^2}\sin\left(\frac{\mathrm\pi}x\right)>0,$$

получаем

$$\;0<\frac{\mathrm\pi}x<x\;\;или\;\;2\mathrm{πk}<\frac{\mathrm\pi}{\mathrm x}<\mathrm\pi+2\mathrm{πk},\;\mathrm k\in\mathbb{N} $$ откуда $$x>1\;\;или\;\;\frac1{2k+1}<x<\frac1{2k},\;k\in\mathbb{N}.$$

Таким образом, на интервалах $(1,+\infty)$ и $(\frac1{2k+1},\frac1{2k}),\;k\in\mathbb{N}$ функция строго возрастает. На интервалах $(\frac1{2k},\frac1{2k-1}),\;k\in\mathbb{N}$ ,очевидно, справедливо неравенство $f'(x)<0$, и поэтому на этих интервалах функция строго убывает. Если $x<0$, то, используя четность функции, получаем, что на интервалах $(-\frac1{2k},-\frac1{2k-1}),\;k\in\mathbb{N}$, функция строго возрастает, а на интервалах $(-\infty,-1)$ и $(-\frac1{2k-1},-\frac1{2k}),\;k\in\mathbb{N}$, строго убывает.

 

Условия постоянства и монотонности

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме «Условия постоянства и монотонности функции».

Таблица лучших: Условия постоянства и монотонности

максимум из 13 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Свойство монотонности интеграла

Свойство 2 (свойство монотонности интеграла)

Если $latex f,g \in R[a,b] (a

$latex \int\limits_{a}^{b}f(x)dx \geqslant \int\limits_{a}^{b}g(x)dx$.

Спойлер

$latex \square$Пусть $latex \phi(x) \equiv f(x)-g(x)$, тогда $latex \phi \in R[a,b]$ и $latex \phi \geqslant 0$. По свойству интеграла от положительной функции

$latex \int\limits_{a}^{b}(f(x)-g(x))dx \geqslant 0 $,

тогда получим что

$latex \int\limits_{a}^{b}f(x)dx \geqslant \int\limits_{a}^{b}g(x)dx$.

Что и требовалось доказать.$latex \blacksquare$

[свернуть]
Пример

Не вычисляя интегралов, определить какой из них больше $latex \int\limits_{3}^{4}\ln{x}dx$ или $latex \int\limits_{3}^{4}\ln^{2}{x}dx$

Спойлер

Заметим, что $latex \ln{x}\geqslant \ln{3}>\ln {e=1},\forall\;x\in[3,4]$ поэтому $latex \ln^{2}{x}>\ln{x},\;\forall\;x\in[3,4]$. Тогда, по свойству монотонности интеграла  $latex \int\limits_{3}^{4}\ln{x}dx < \int\limits_{3}^{4}\ln^{2}{x}dx$.

[свернуть]
Литература
Смотрите так же