12.8.1 Квадратичные формы

Определение. Квадратичной формой на $\mathbb{R}^{n}$ называется каждая функция вида
$$Q\left(h\right) = \sum_{i,j=1}^{n} a_{ij}h^{i}h^{j}, $$
где $a_{ij}$ — действительные числа. Матрица $\left(a_{ij}\right)$ называется матрицей квадратичной формы.

Будем считать, что $a_{ij}=a_{ji},$ т. е. что матрица $\left(a_{ij}\right)$ симметрична. Заметим, что $Q$ — это многочлен второго порядка от $n$ переменных $h_{1},\cdots ,h_{n}.$ Ясно, что для любого действительного числа $t$
$$Q\left(th\right) = t^{2}Q\left(h\right). $$

Это свойство называется свойством однородности второго порядка.

Определение Квадратичная форма $Q$ называется положительно определенной, если для любого $h \neq 0$ справедливо неравенство $Q\left(h\right) \gt 0.$

Аналогично, если для любого $h \neq 0$ имеем $Q\left(h\right)\lt 0,$ то такая квадратичная форма называется отрицательно определенной.

Если квадратичная форма принимает как положительные, так и отрицательные значения, то такая квадратичная форма называется неопределенной.

Если $Q\left(h\right)\geqslant 0$ для всех $h,$ то форма называется положительно полуопределенной, а если $Q\left(h\right)\leqslant 0$ для всех $h,$ то форма называется отрицательно полуопределенной.

Квадратичная форма называется знакоопределенной, если она положительно определенная или отрицательно определенная.

Пример 1. Если $Q\left(x^{1},x^{2}\right) = (x^{1})^{2} + 2(x^{2})^{2},$ то для всех $x^{1},x^{2}$ кроме $x^{1}=x^{2}=0$, имеем $Q\left(x^{1},x^{2}\right) \gt 0,$ т.е. эта форма положительно определенная.
Пример 2. Если $Q\left(x^{1},x^{2}\right) = (x^{1})^{2} — x^{1}x^{2} — (x^{2})^{2}$ имеем $Q(1,0)=1, Q(0,1)= -1, $ так что эта форма неопределенная.
Пример 3. Если $Q\left(x^{1},x^{2}\right) = (x^{1})^{2} — 2x^{1}x^{2} + (x^{2})^{2}$ положительно полуопределенная, поскольку для любых $x^{1},x^{2}$ имеем $Q\left(x^{1},x^{2}\right) \geqslant 0,$ но равенство $Q\left(x^{1},x^{2}\right) = 0$ имеет место не только в точке $x^{1}=x^{2}=0,$ а в каждой точке вида $x^{1}=x^{2}$.
Пример 4. Форма $Q\left(h\right) = (h^{1})^{2} + \cdots + (h^{n})^{2} = |h|^{2},$ очевидно, положительно определенная.
Пример 5. Пусть $Q\left(h\right) = (h^{1})^{2} + \cdots + (h^{m})^{2},$ где $m \lt n$. Эта форма положительно полуопределенная, поскольку $Q(h) \geqslant 0 $, но при $i\gt m$ значений этой формы на стандартном векторе $e_{i}$ равно нулю.
Пример 6. Пусть $Q\left(h\right) = (h^{1})^{2} + \cdots + (h^{m})^{2} — (h^{m+1})^{2} — \cdots — (h^{n})^{2},$ где $m \lt n$. Тогда эта форма неопределенная, поскольку $Q(e_{i})=1$ при $i\leqslant m$ и $Q(e_{i})=-1,$ если $i\gt m.$

Для любой квадратичной формы $Q$ $$|Q(h)| \leqslant \sum_{i,j=1}^{n} |a_{i j}| |h^{i}| |h^{j}| \leqslant | h^{2} | \sum_{i,j=1}^{n} |a_{i j}| \equiv K | h^{2} |.$$

Эта оценка показывает, что при $h \rightarrow 0$ квадратичная форма стремится к нулю. Если квадратичная форма знакоопределенная, то полученный порядок стремления к нулю оказывается точным. Именно, справедлива

Лемма 1. Пусть $Q$ — положительно определенная квадратичная форма на $\mathbb{R}^{n}$. Тогда существует такое положительное число $\lambda ,$ что $$Q(h) \geqslant \lambda |h|^{2} (h \subset \mathbb{R}^{n}). $$
Обозначим через $S$ единичную сферу в $\mathbb{R}^{n},$ т.е. $$ S=\left\{x \in \mathbb{R}^{n} : |x|=1\right\}.$$Легко видеть, что $S$ — замкнутое и ограниченное множество и, следовательно, компактное. Поэтому, по второй теореме Вейерштрасса, непрерывная функция $Q$ достигает своего наименьшего значения, которое мы обозначим через $\lambda.$ Но на $S$ форма $Q$ принимает положительные значения, так что $\lambda \gt 0.$
Итак, $Q(x)\geqslant \lambda (|x|=1).$ Если теперь $h$ — произвольный вектор из $\mathbb{R}^{n},$ то положим $ x = \frac{h}{|h|}.$ Тогда $|x|=1,$ т.е. $x$ лежит на единичной сфере, а поэтому $Q(x)\geqslant \lambda .$ Если вместо $x$ подставим его значение, то получим $Q(\frac{h}{|h|})\geqslant \lambda .$ Воспользовавшись свойством однородности второго порядка для формы $Q$, имеем $Q(h)\geqslant \lambda|h|^{2}.$

Теперь займемся таким вопросом. Как по матрице коэффициентов квадратичной формы судить о знакоопределенности формы? Рассмотрим подробно случай $n=2.$

Пусть $Q(h,k)=a_{11}h^{2}+2a_{12}hk+a_{22}k^{2}.$ Предположим сначала, что $a_{11}\neq 0.$ Тогда $$Q(h,k)=\frac{1}{a_{11}}(a_{11}^{2} h^{2}+2a_{11}a_{12}hk+a_{11}a_{22}k^{2}) = \frac{1}{a_{11}}\left[(a_{11}h+a_{12}k)^{2}+\triangle k^{2} \right],$$ где
$$\triangle = a_{11}a_{22}-a_{12}^{2} = \begin{vmatrix}a_{11} & a_{12} \\a_{21} & a_{22} \end{vmatrix}.$$

  1. Если $\triangle \gt 0,$ то выражение в квадратных скобках положительно для любых $h$ и $k,$ не равных одновременно нулю, т.е. $Q(h,k)\neq 0,$ причём $sign (Q(h,k)) = sign (a_{11}).$ В этом случае форма является знакоопределенной, она сохраняет свой знак.
  2. Рассмотрим случай $\triangle \lt 0.$ Пусть, например, $k\neq 0.$ Тогда вынося за скобки $k^{2}$ и обозначая $t=\frac{h}{k},$ получаем $$ Q(h,k) = k^{2}\left[a_{11}t^{2}+2a_{12}t+a_{22} \right].$$ Если $a_{11}\neq 0,$ то в скобках имеем квадратный трёхчлен относительно $t.$ Его дискриминант $-4\triangle \gt 0.$ Поэтому этот квадратный трёхчлен имеет различные действительные корни, а значит принимает, как и положительные, так и отрицательные значения.

    Если же $a_{11}=0,$ то $a_{12}\neq 0$(так как иначе бы получили, что $\triangle = 0$). Значит, в квадратных скобках линейный двучлен $2a_{12}t+a_{22},$ который также принимает как положительные, так и отрицательные значения.

    Итак, если $\triangle \lt 0,$ то квадратичная форма $Q$ является неопределенной.

  3. Пусть $\triangle = 0.$ Если $a_{11}\neq 0,$ то получим $$Q(h,k) = \frac{1}{a_{11}}(a_{11}h+a_{12}k)^{2}.$$ Если, например, $a_{11} \gt 0,$ то всегда $Q(h,k) \geqslant 0,$ а при $h = -\frac{a_{12}k}{a_{11}}$ имеем $Q(h,k)=0.$ Это означает, что существуют ненулевые векторы, на которых форма обращается в нуль, и получаем, что форма полуопределена.

    Если же $a_{11}=0,$ то в этом случае $\triangle = -a_{12}^{2}.$ Значит $a_{12}=0$ и $Q(h,k) = a_{22}k^{2}.$ Это — тоже полуопределенная форма.

Итак, если $\triangle = 0,$ то форма полуопределенная.

Окончательно приходим к следующему выводу.

Лемма 2. Пусть

$Q(h,k)=a_{11}h^{2}+2a_{12}hk+a_{22}k^{2}.$ и $\triangle = a_{11}a_{22}-a_{12}^{2} $

Тогда:

1) если $\triangle \gt 0$, то форма $Q$ — знакоопределенная, причём $sign (Q) = sign (a_{11});$

2) если $\triangle \lt 0 ,$ то $Q$ — неопределенная форма.

2) если $\triangle = 0 ,$ то $Q$ — полуопределенная форма.

Определение. Пусть $Q(h)=\sum_{i,j=1}^{n}a_{ij}h^{i}h^{j}$ — квадратичная форма на $\mathbb{R}^{n}$ с симметричной матрицей $$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}.$$

Миноры этой матрицы, расположенные в её левом верхнем углу, называют главными минорами, т.е. главные миноры — это $$
\triangle_{1} = a_{11}, \triangle_{2} = \begin{vmatrix}a_{11} & a_{12} \\a_{21} & a_{22} \end{vmatrix}, \cdots , \triangle_{n} =\begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots \ \\ a_{n1} & \cdots & a_{nn} \end{vmatrix}.
$$

Критерий Сильвестра. Для того, чтобы квадратичная форма $Q$ была положительно определенной, необходимо и достаточно, чтобы все её главные миноры были положительными.

Критерий отрицательной определенности. Для того, чтобы квадратичная форма $Q$ была отрицательно определенной, необходимо и достаточно, чтобы были выполнены следующие условия: $-\triangle_{1} \gt 0,\triangle_{2} \gt 0,\cdots ,(-1)^{n}\triangle_{n} \gt 0,$ т.е. главные миноры должны иметь чередующиеся знаки, причём первый должен быть отрицательным.

Эти два критерия здесь мы доказывать не будем.

Примеры решения задач

  1. Найти матрицу квадратичной формы $$Q(x_{1},x_{2},x_{3}) = 2x_{1}^{2} — 4x_{1}x_{2} + x_{2}^{2} + 2x_{1}x_{3} — x_{3}^{2}$$
    Решение
    1. Запишем квадратичную форму в виде $$Q(x_{1},x_{2},x_{3}) = 2x_{1}^{2} — 2x_{1}x_{2} — 2x_{2}x_{1} + x_{2}^{2} + x_{1}x_{3} + x_{3}x_{1} — x_{3}^{2}.$$
    2. Здесь $a_{11}=2,a_{12}=-2,a_{13}=1,a_{21}=-2,a_{22}=1,a_{23}=0,a_{31}=1,a_{32}=0,a_{33}=-1,$ следовательно, матрица этой квадратичной формы есть $$\begin{pmatrix} 2 & -2 &1 \\ -2 & 1 & 0 \\ 1 & 0 & -1\\ \end{pmatrix}.$$
  2. Установить характер знакоопределенности квадратичной формы $$Q(x_{1},x_{2},x_{3})=4x_{1}^{2}+6x_{2}^{2}+2x_{3}^{2}+6x_{1}x_{2}$$

    Решение
    1. Найдём матрицу квадратичной формы $$A = \begin{pmatrix} 4 & 3 & 0 \\ 3 & 6 & 0 \\ 0 & 0 & 2\\ \end{pmatrix}.$$
    2. Теперь проверим знакоопределенность формы по критерию Сильвестра $$
      \triangle_{1} = 4 \gt 0, \triangle_{2} = \begin{vmatrix}4 & 3 \\3 & 6 \end{vmatrix} = 15 \gt 0, \triangle_{3} =\begin{vmatrix} 4 & 3 & 0 \\ 3 & 6 & 0 \\ 0 & 0 & 2\\ \end{vmatrix} = 2\cdot15 = 30 \gt 0,$$ значит, квадратичная форма положительно определенная.
  3. Найти все значения $\lambda,$ при которых положительно определена квадратичная форма $$Q(x_{1},x_{2},x_{3}) = 2x_{1}^{2} + \lambda x_{2}^{2} + 5x_{3}^{2} + 4x_{1}x_{2} + 4x_{1}x_{3}. $$

    Решение
    1. Найдём матрицу квадратичной формы $$A = \begin{pmatrix} 2 & 2 & 2 \\ 2 & \lambda & 0 \\ 2 & 0 & 5\\ \end{pmatrix}.$$
    2. Найдём главные миноры: $$
      \triangle_{1} = 2 , \triangle_{2} = \begin{vmatrix}2 & 2 \\2 & \lambda \end{vmatrix} = 2\lambda — 4 , \triangle_{3} =\begin{vmatrix} 2 & 2 & 2 \\ 2 & \lambda & 0 \\ 2 & 0 & 5\\ \end{vmatrix} = 6\lambda — 20.$$

    3. По критерию Сильвестра, $Q$ положительно определена тогда и только тогда, когда $$\begin{cases}2\lambda -4 \gt 0, \\6\lambda — 20 \gt 0\end{cases}\Leftrightarrow \lambda \gt \frac{10}{3}.$$

Проверка знаний по пройденной теме

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме.

Список использованной литературы

Ограниченные и неограниченные множества

Множество $latex X(\subset\mathbb{R})$ называется ограниченным сверху, если $latex \exists c\in\mathbb{R}:$ $latex \forall x\in X:$ $latex x\leq c$, то есть все элементы множества $latex X$ лежат левее $latex c$.

31

Например: $latex 3,2,1,0,-1,…$ ограничено сверху любым числом, которое больше или равно 3.

В данном случае, число $latex c$ называется верхней границей множества $latex X$.

Множество $latex X(\subset\mathbb{R})$ называется ограниченным снизу, если $latex \exists c\in\mathbb{R}:$ $latex \forall x\in X:$ $latex x\geq c$, то есть все элементы множества $latex X$ лежат правее $latex c$.

32

В данном случае, число $latex c$ назовём нижней границей множества $latex X$.

Например: $latex 1,2,…$ ограничено любым числом, которое меньше или равно 1.

Множество $latex X(\subset\mathbb{R})$ называется ограниченным, если $latex \exists {c}’,c \in\mathbb{R}: \forall x \in X: {c}’ \leq x \leq c$.

Проще говоря, множество $latex X$ называется ограниченным, если оно ограниченно сверху и ограниченно снизу .

Предложение: (другая запись ограниченности множества)

Множество $latex X(\mathbb{R})$ ограниченно $latex \Rightarrow \exists c \in \mathbb{R}:\forall x \in X: \left|x\right| \leq c$.

$latex -c \leq x \leq c$

$latex x$ — найбольший элемент (максимум)  множества $latex X$, если $latex x\in X$ и $latex \forall y\in X: y\leq x$.

$latex x$ — найменьший элемент (минимум)  множества $latex X$, если $latex x\in X$ и $latex \forall y\in X: y\geq x$.

Например: $latex x=(0;1]$  не имеет минимума.

Теорема

(принцип Архимеда)

Для $latex \forall x \in \mathbb{R}$   $latex \exists n \in \mathbb{N}: n>x$, то есть множество натуральных чисел неограничено сверху во множестве вещественных чисел.

$latex \square$ Докажем методом от противного. Предположим, что $latex \mathbb{N}$ ограничено сверху во множестве $latex \mathbb{R}$. Тоесть $latex E$ — множество всех его верхних границ (не пустое). $latex \mathbb{N} \leq E$, тогда по аксиоме непрерывности $latex \exists c \in \mathbb{R}: \mathbb{N} \leq c \leq E$. Так как $latex c \leq E$, то $latex c$ не является верхней границей. Следовательно, $latex c-1 \notin E$, то есть $latex c-1$ не является верхней границей для $latex \mathbb{N}$. $latex \exists n \in \mathbb{N}: n>c-1 \Leftrightarrow c<n+1$. Так как $latex n \in \mathbb{N}$, то $latex n+1 \in \mathbb{N}$. Получаем, что $latex n+1 \leq c$. Получили противоречие с тем, что $latex c<n+1$. $latex \blacksquare$

Тест "Ограниченные и неограниченные множества"

Тестовые вопросы по вышеизложенной теме

Таблица лучших: Тест "Ограниченные и неограниченные множества"

максимум из 5 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Источники:

Конспект по мат.анализу (Лекции Лысенко З.М.)

В.И.Коляда, А.А.Кореновский «Курс лекций по мат.анализу, часть 1» (Одесса «Астропринт» , 2009г.), стр.6.

В.И.Ильин, Э.Г.Позняк «Основы мат.анализа, часть 1, выпуск 2» (Издание четвёртое, переработанное и дополненное, 1982г.) стр.43.

Подробнее на:

Wikipedia

mate.oglib.ru