M2103. Таблица с разными числами в строке и столбце

Условие

Дана таблица [latex]n\times n[/latex], столбцы которой пронумерованы числами от [latex]1[/latex] до [latex]n[/latex]. В клетки таблицы расставляются числа [latex]1,2,\cdots, n[/latex] так, что в каждой строке и в каждом столбце все числа различны. Назовем клетку хорошей, если читсло в ней больше номера столбца, в котором она находится. При каких [latex]n[/latex] существует расстановка, в которй во всех строках одинаковое количество хороших клеток?

Решение

Найдем общее количество хороших клеток. В первом столбце их [latex]n-1[/latex] (все, кроме клетки с числом 1), во вторм их [latex]n-2[/latex] (все, кроме клетки с числом 1 и 2) и т.д., в последнем столбце таких клкеток нет. Значит, всего их [latex](n-1)+(n-2)+\cdots +1=\frac{n(n-1)}{2}[/latex]

Поэтому в каждой строке их должно быть по [latex]\frac{n-1}{2}[/latex], следовательно, [latex]n[/latex] должно быт ьнечетным.

[latex]1[/latex] [latex]n[/latex] [latex]n-1[/latex] [latex]\cdots[/latex] [latex]2[/latex]
[latex]2[/latex] [latex]1[/latex] [latex]n[/latex] [latex]\cdots[/latex] [latex]3[/latex]
[latex]3[/latex] [latex]2[/latex] [latex]1[/latex] [latex]\cdots[/latex] [latex]4[/latex]
[latex]\vdots[/latex] [latex]\vdots[/latex] [latex]\vdots[/latex] [latex]\ddots[/latex] [latex]\vdots[/latex]
[latex]n-1[/latex] [latex]n-2[/latex] [latex]n-3[/latex] [latex]\cdots[/latex] [latex]n[/latex]
[latex]n[/latex] [latex]n-1[/latex] [latex]n-2[/latex] [latex]\cdots[/latex] [latex]1[/latex]

Приведем пример расстановки при нечетном [latex]n[/latex]. Пусть в первой строке записаны числа в порядке [latex]1,n,n-1,n-2,\cdots,2[/latex]

а каждая следующая строка является циклическим сдвигом предыдущей строки на 1 клетку (см.рис.). Очевидно, в любой строке и в любом столбце каждое из чисел [latex]1,2,\cdots,n[/latex] встречается по одному разу. Рассмотрим [latex]m[/latex]-ю строку ([latex]m\in \left \{ 1,2,\cdots,n \right \}[/latex]). В ее первых [latex]m[/latex] клетках стоят числа [latex]1,2,\cdots,m[/latex] в обратном порядке, поэтому среди этих клеток ровно [latex]\left [\frac{m}{2} \right][/latex] хороших. В ее последних [latex]n-m[/latex] клетках(т.е. в столбцах с номерами [latex]m+1,m+2,\cdots,n[/latex]) стоят числа [latex]m+1,m+2,\cdots,n[/latex] в обратном порядке, поэтому среди этих клеток ровно [latex]\left [\frac{n-m}{2} \right][/latex] хороших. Так как числа [latex]m[/latex] и [latex]n-m[/latex] разной четности, то в [latex]m[/latex]-й строке ровно [latex]\left [\frac{m}{2} \right]+\left [\frac{n-m}{2} \right]=\frac{m}{2}+\frac{n-m}{2}-\frac{1}{2}=\frac{n-1}{2}[/latex] хороших клеток.

К.Чувилин

M1384. Невырожденность и выпуклость четырехугольников, связанных с центрами вписанного, описанного кругов и ортоцентром треугольника

Условие

ABC — неравнобедренный остроугольный треугольник; O и I — центры описанного и вписанного кругов, H — ортоцентр треугольника. Докажите, что четырехугольники AOIH, BOIH и COIH невырождены и среди них ровно два выпуклых.

Доказательство

Решению предпошлем легко доказываемое предположение:

В треугольнике биссектриса делит пополам угол между высотой и радиусом описанного круга, проведенным в ту же вершину.

Рис. 1 к задаче M1384

Докажем это предположение. Пусть [latex]BM[/latex] — биссектриса угла [latex]ABC[/latex] (рис. 1). Так как [latex]OB=OM[/latex], то [latex]\angle OBM=\angle OMB[/latex]. Так как точка [latex]M[/latex] — середина дуги [latex]AMC[/latex], то прямые [latex]OM[/latex] и [latex]BD[/latex] параллельны. Следовательно, [latex]\angle DMB=\angle BMO[/latex], отсюда [latex]\angle OBM=\angle DBM[/latex], что и требовалось доказать.

Решение задачи. Покажем вначале, что точки [latex]O[/latex] и [latex]H[/latex] не могут лежать на одной прямой с какой-либо из вершин треугольника (в частности, эти точки не могут совпадать). Действительно, в этом случае выходящие из вершины медиана и высота совпадают, и треугольник оказывается равнобедренным. Отсюда и из леммы уже следует, что [latex]AOIH[/latex], [latex]BOIH[/latex] и [latex]COIH[/latex] — невырожденные многоугольники (четырехугольники либо треугольники).

Рис. 2 к задаче M1384

Пусть прямая [latex]OH[/latex] пересекает стороны [latex]AB[/latex] и [latex]BC[/latex] треугольника, [latex]BC> AB[/latex]. Для завершения решения достаточно доказать, что точка [latex]I[/latex] лежит внутри той же полуплоскости с границей [latex]OH[/latex], что и точка [latex]B[/latex] (рис.2). Докажем это.

Обозначим [latex]BD=h_{s}[/latex]. Имеем: [latex]CD>AD[/latex]. Восстановим перпендикуляр к середине отрезка [latex]AC[/latex], получаем: точка [latex]O[/latex] принадлежит треугольнику [latex]BCD[/latex]. Обозначим через [latex]E(K)[/latex] точку пересечения прямой [latex]AI(CI)[/latex] с прямой [latex]OH[/latex]. Необходимо доказать, что точки на прямой расположены в следующем порядке: [latex]O,K,E,H[/latex], т.е что [latex]\frac{OK}{KH}< \frac{OE}{EH}.[/latex] Но биссектриса угла треугольника делит противоположную сторону на части, пропорциональные прилежащим сторонам. Отсюда и из леммы получаем: [latex]\frac{OK}{KH}=\frac{CO}{CH}, \frac{OE}{EH}=\frac{AO}{AH}.[/latex] Доказываемое утверждение можно теперь переписать так: [latex]\frac{AH}{AO}< \frac{CH}{CO}[/latex] или [latex]CH>AH.[/latex] Но поскольку [latex]CD>AD[/latex], то [latex]CH>AH[/latex]. Отсюда и следует утверждение задачи.

Замечания:

  • Нетрудно показать, что прямая [latex]OH[/latex] пересекает большую и меньшую стороны треугольника [latex]ABC[/latex]. Значит, выпуклыми являются четырехугольники, соответствующие большему и меньшему его углам.
  • Задача допускает также и алгебраическое решение.

В.Сендеров

M1656. Оценка числа доминирующих вершин в вершинно-взвешенном графе

Условие

В классе 30 учеников, и у каждого из них одинаковое число друзей среди одноклассников. Каково наибольшее возможное число учеников, которые учатся лучше большинства своих друзей? (Про любых двух учеников в классе можно сказать, кто из них учится лучше.)

Ответ: 25.

Решение

Учеников, которые учатся лучше большинства своих друзей, назовем хорошими. Пусть [latex]x[/latex] — число хороших учеников, [latex]k[/latex] — число друзей у каждого ученика. Лучший ученик класса является лучшим в [latex]k[/latex] парах друзей, а любой другой хороший ученик — не менее, чем в [latex][k/2]+1 \geqslant (k+1)/2[/latex] парах (здесь квадратные скобки обозначают целую часть числа). Поэтому хорошие ученики являются лучшими не менее чем в [latex]k+(x-1)(k+1)/2[/latex] парах.
Это число не может превышать числа всех друзей в классе, равного [latex]30k/2=15k[/latex]. Отсюда [latex]k+(x-1)(k+1)/2 \leqslant 15k[/latex] или

[latex]x\leq28\frac{k}{k+1}+1[/latex] [latex](1)[/latex]

Заметим далее, что

[latex]\frac{k+1}{2}\leq30-x[/latex] [latex](2)[/latex]

поскольку число учеников, лучше которых учится наихудший из хороших, не превышает 30.

Правая часть неравенства [latex](1)[/latex] возрастает с ростом [latex]k[/latex], а неравенство [latex](2)[/latex] равносильно условию

[latex]k\leq59-2x[/latex] [latex](3)[/latex]

Из [latex](1)[/latex] и [latex](3)[/latex] следует, что [latex]x\leq28*\frac{59-2x}{60-2x}+1[/latex], или

[latex]x^{2}-59x+856\geq0[/latex] [latex](4)[/latex]

К задаче M1656

Наибольшим целым [latex]x[/latex], удовлетворяющим [latex](4)[/latex] и условию [latex]x \leq 30[/latex], является [latex]x=25[/latex]. Итак, число хороших учеников не превышает 25, что можно проиллюстрировать на графике.

Покажем, что оно может равняться 25. Занумеруем учеников числами от 1 до 30 в порядке ухудшения успеваемости и расположим номера в таблице [latex]6\times 5[/latex] так, как показано на рисунке.

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30

Пусть пара учеников является парой друзей, если их номера расположены одним из трех способов:

  1. в соседних строках и в разных столбцах;
  2. в одном столбце и один из номеров при этом находится в нижней строке;
  3. в верхней строке.

При этом, как нетрудно проверить все требуемые условия выполнены.

С.Токарев

M2098

Задача М2098

Двое играют в игру, делая ходы по очереди: первый рисует на плоскости многоугольник, не налегающий на уже нарисованные, а второй ответным ходом раскрашивает его в один из 2008 цветов. Второй игрок хочет, чтобы любые два многоугольника, граничащие по отрезку сторны, имели разные цвета. Сможет ли первый игрок помешать ему?

Ответ: сможет

Решение

М2098Докажем индукцией по [latex]n[/latex], что первый может играть так, что нарисованные им многоугольники будут давать в объединении некоторый многоугольник [latex]P_{n}[/latex], на границу которого выходят многоугольники не менее [latex]n[/latex] цветов. Отсюда будет следовать, что никакого конечного числа цветов недостаточно.

База индукции очевидна. Пусть утверждение верно для [latex]n=k[/latex], докажем его для [latex]n=k+1[/latex]. Из предположения индукции следует, что первый игрок может играть так, чтобы нарисованные многоугольники давали в объединении [latex]k[/latex] многоугольников [latex]P_{k}^{(1)},P_{k}^{(2)},’cdots,P_{k}^{(k)}[/latex], на границу каждого из которых выходят многоугольники не менее [latex]k[/latex] цветов. На границе многоугольника [latex]P_{k}^{(1)}[/latex] выделим отрезок [latex]Delta_{1}[/latex] некоторго цвета 1, на границе многоугольника [latex]P_{k}^{(2)}[/latex] выделим отрезок [latex]Delta_{2}[/latex] некоторго цвета 2, отличного от 1, и т.д., на границе многоугольника [latex]P_{k}^{(k)}[/latex] выделим отрезок [latex]Delta_{k}[/latex] некоторго цвета k, отличного от уже определенных цветов [latex]1,2,cdots,k-1[/latex]. Пусть теперь первый нарисует многоугольник [latex]P[/latex], пересекающийся с многоугольником [latex]P_{k}^{(i)}[/latex] по части отрезка [latex]Delta_{i}[/latex] для всех [latex]i=1,2,cdots,k[/latex] (рис.). Второй игрок должен раскрасить многоугольник [latex]P[/latex] в цвет, отличный от цветов [latex]1,2,cdots,k[/latex]. Тогда на границу многоугольника, являющего объединением многоугольников [latex]P,P_{k}^{(1)},P_{k}^{(2)},cdots,P_{k}^{(k)}[/latex], выходят не менее [latex]k+1[/latex] цветов. Переход индукции доказан.

Замечания

Строгое доказательство существования многоугольника [latex]P[/latex] из решения задачи далеко не просто (хотя интуитивно все очевидно), оно следует из известной топологической теоремы Жордана.

Отметим, что вопрос, поставленный в задаче, уже рассматривался в «Задачнике «Кванта»» для случая, когда первому игроку позволяется рисовать многоугольники лишь специального вида. Результат этой задачи интресно сопоставить также со знаменитой теоремой о четырех красках, согласно которой для раскрашивания правильным образом любой карты на плоскости достаточно лишь четырех цветов.

Е.Гик, П.Кожевников

M1472

Журнал «Квант» — физико-математический журнал для школьников и студентов

ЯНВАРЬ/ФЕВРАЛЬ 1995 г. №1

Условие.

При каких натуральных [latex]n>1[/latex] в таблице

[latex]1[/latex] [latex]2[/latex] [latex]3[/latex] [latex]…[/latex] [latex]n-1[/latex] [latex]n[/latex]
[latex]n[/latex] [latex]1[/latex] [latex]2[/latex] [latex]…[/latex] [latex]n-2[/latex] [latex]n-1[/latex]
[latex]n-1[/latex] [latex]n[/latex] [latex]1[/latex] [latex]…[/latex] [latex]n-3[/latex] [latex]n-2[/latex]
[latex]…[/latex] [latex]…[/latex] [latex]…[/latex] [latex]…[/latex] [latex]…[/latex] [latex]…[/latex]
[latex]3[/latex] [latex]4[/latex] [latex]5[/latex] [latex]…[/latex] [latex]1[/latex] [latex]2[/latex]
[latex]2[/latex] [latex]3[/latex] [latex]4[/latex] [latex]…[/latex] [latex]n[/latex] [latex]1[/latex]

можно выбрать [latex]n[/latex] разных чисел в разных строках и разных столбцах?

Решение и ответ.

Ответ: при нечетном [latex]n[/latex] — можно, при четном — нельзя.

Будем считать, что таблица состоит из клеток [latex](x;y)[/latex], где [latex]x[/latex] и [latex]y[/latex] — целые числа от [latex]1[/latex] до [latex]n[/latex], причем в клетке [latex](x;y)[/latex] стоит число [latex]f(x;y)[/latex] от [latex]1[/latex] до [latex]n[/latex] такое, что: [latex]f(x;y)=x+y(mod n).[/latex]

Т.е. разность [latex]f(x;y)-(x+y)[/latex] делится на [latex]n[/latex]. (Очевидно, это расположение чисел такое же, как в условии).

Если выбраны числа в клетках [latex](x_{i};y_{i})[/latex], стоящих в разных строках и разных столбцах [latex](i=1,2,…,n)[/latex], то среди [latex]x_{i}[/latex] и среди [latex]y_{i}[/latex] каждое число [latex]1,2,…,n[/latex] встречается по разу, поэтому [latex]x_{1}+…+x_{n} = y_{1}+…+y_{n} = n(n+1)/2[/latex].

Если все числа [latex]f(x_{i};y_{i})[/latex] различны по модулю [latex]n[/latex], то и сумма [latex](x_{1}+y_{1})+…+(x_{n}+y_{n})=n(n+1) [/latex]

должна равняться [latex]n(n+1)/2[/latex] по модулю [latex]n[/latex]. Но если [latex]n[/latex] чётно, [latex]n=2k[/latex], то разность [latex]2k(2k+1)-k(2k+1)=k(2k+1)[/latex]

не делится на [latex]n=2k[/latex], так что выбрать числа требуемым образом нельзя.

Если же [latex]n[/latex] нечетно, то достаточно выбрать числа [latex]f(x;y)[/latex] в клетках [latex]x=y[/latex], идущих по диагонали, где все они различны (числа [latex]2,4,…,2n[/latex] дают разные остатки при делении на [latex]n[/latex]).

Замечание.

Эта задача — по существу другая формулировка двух более известных:

[latex](1)[/latex] Можно ли выписать две перестановки чисел [latex] 1,2,…,n [/latex] одну под другой так, чтобы суммы чисел по столбцам давали различные остатки от деления на [latex]n[/latex]?
[latex](2)[/latex] Пусть [latex]n[/latex] штырьков радиолампы и [latex]n[/latex] соответствующих гнезд розетки, в которую она втыкается, расположены по кругу в вершинах правильного [latex]n[/latex]-угольника. Можно ли штырьки и гнезда занумеровать числами [latex]1,2,…,n[/latex] так, чтобы при любом втыкании лампы в розетку ровно один штырек попадал в гнездо с тем же номером?

Ответ. конечно, тот же, что и в задаче [latex]M1472[/latex].

Н.Васильев, А.Савин