8.2 Площадь в полярных координатах

$\DeclareMathOperator{\ctg}{ctg}\DeclareMathOperator{\tg}{tg} \DeclareMathOperator{\arctg}{arctg} \newcommand{\rndBrcts}[1]{\left ( #1 \right )} \newcommand{\abs}[1]{\left | #1 \right |}$

В полярных координатах положение точки на плоскости характеризуется полярным радиусом $r$ – расстоянием от точки до начала координат и углом $φ$, образованным радиус-вектором точки и положительным направлением оси $Ox$. Будем считать, что $−\pi< φ \leqslant \pi$. Рассмотрим на плоскости множество, ограниченное кривой, заданной уравнением $r=r(\varphi)$ $(\alpha \leqslant \varphi \leqslant \beta)$, и отрезками лучей $\varphi=\alpha$ и $\varphi=\beta$. Предположим, что функция $r(\varphi)$ непрерывна и положительна на $[\alpha ,\beta]$. Можно показать, что это множество квадрируемо. Разобьем отрезок $[\alpha, \beta]$ на части точками $\alpha =\varphi_{0} < \varphi_{1}< \dots < \varphi_{n}= \beta$. Тогда рассматриваемое множество разобьется на криволинейные секторы. Если исходное разбиение отрезка $[\alpha, \beta]$ достаточно мелкое, то, в силу непрерывности функции $r(\varphi),i$-й сектор можно приближенно считать сектором круга. Точнее, если обозначим $$\mu_{i} =\inf_{\varphi_{i} \leqslant \varphi_{i} \leqslant \varphi_{i+1}}r(φ) \;\;\;и\;\;\;Mi=\sup_{\varphi_{i} \leqslant \varphi \leq \varphi_{i+1}}r(φ),$$ то рассматриваемый криволинейный сектор содержит в себе круговой сектор радиуса $\mu_{i}$ и содержится в круговом секторе радиуса $M_{i}$. Площадь внутреннего сектора радиуса $\mu_{i}$ равна $\displaystyle \frac{1}{2}\mu_{i}^{2} \Delta \varphi_{i}$, а площадь внешнего – $\displaystyle \frac{1}{2}M_{i}^2 \Delta \varphi_{i}$, где $\Delta \varphi_{i}$ – угол при вершине. Складывая эти площади, получим $$\frac{1}{2} \sum_{i=0}^{n-1}\mu_{i}^2 \Delta \varphi_{i}\equiv \underline S,$$ $$\frac{1}{2} \sum_{i=0}^{n-1}M{i}^2 \Delta \varphi_{i}\equiv \overline S.$$

Как мы уже отметили, рассматриваемое множество квадрируемо, так что его площадь $S$ удовлетворяет неравенству $\underline S\leqslant S\leqslant \overline S.$ Но $\underline S$ и $\overline S$ представляют собой соответственно нижнюю и верхнюю суммы Дарбу для функции $\displaystyle \frac{1}{2}r^2(\varphi),$ соответствующие данному разбиению отрезка $[\alpha,\beta].$ Поэтому, учитывая, что функция $\displaystyle \frac{1}{2}r^2(\varphi)$ интегрируема по Риману на отрезке $[\alpha; \beta ],$ получаем, что при стремлении к нулю диаметра разбиения верхняя и нижняя суммы Дарбу обе стремятся к $\displaystyle \frac{1}{2} \int_\limits{ \alpha}^{ \beta}r^2( \varphi)d \varphi .$ Таким образом, мы доказали равенство
$$S=\frac{1}{2} \int_\limits{ \alpha}^{ \beta}r^2( \varphi)d \varphi .$$

Примеры решения задач

Данные примеры читателю рекомендуется решить самому в качестве тренировки.

  1. Спираль Архимеда задается уравнением $r=a \varphi$ $(0 \leqslant \varphi \leqslant 2 \pi),$ где параметр $a>0.$ Найдите площадь множества точек плоскости, ограниченной спиралью Архимеда.
    Решение

    Площадь множества точек плоскости, ограниченной спиралью Архимеда равна $$S=\frac{1}{2} \int\limits_{0}^{2 \pi}r^2(\varphi)d \varphi = \frac{1}{2} a^2 \int_\limits{0}^{2 \pi} \varphi^2 d \varphi = \frac{4 \pi^3 a^2}{3}$$

    Ответ: $\displaystyle S=\frac{4 \pi^3 a^2}{3}.$

  2. Вычислить площадь фигуры, ограниченной кардиоидой $r=1+ \cos \varphi$ $(0 \leqslant \varphi \leqslant 2 \pi)$
    Решение

    $$S=\frac{1}{2} \int_\limits{0}^{2 \pi}(1+ \cos \varphi)^2 d \varphi = $$
    $$=\frac{1}{2}\int_\limits{0}^{2\pi}\left ( 1+2\cos\varphi+\cos^2\varphi \right )d\varphi=$$
    $$=\frac{1}{2}\int_\limits{0}^{2\pi}\left ( 1+2\cos\varphi+\frac{1+\cos 2 \varphi}{2} \right )d \varphi=$$
    $$=\frac{1}{2}\int_\limits{0}^{2\pi}\left ( \frac{3}{2} + 2\cos\varphi+\frac{\cos2\varphi}{2} \right )d\varphi=$$
    $$=\frac{1}{2}\left ( \frac{3}{2}\varphi + 2\sin\varphi+\frac{\sin2\varphi}{4}\right )\bigg|_{0}^{2\pi}=\frac{3\pi}{2}$$

    Ответ: $\displaystyle S=\frac{3 \pi}{2}.$

  3. Вычислить площадь фигуры, ограниченной линией $r(\varphi)=2 \cos ^2 \varphi$
    Решение

    Так как, $r(\varphi)=2 \cos ^2 \varphi \geq 0$ $\forall \varphi ,$ значит угол принимает все значения от $\alpha = 0$ до $\beta = 2 \pi .$ По рабочей формуле:
    $$S=\frac{1}{2} \int_\limits{\alpha}^{\beta}r^2(\varphi)d \varphi=\frac{1}{2}\int_\limits{0}^{2\pi}(2 \cos^2 \varphi)^2 d \varphi=$$
    $$=\frac{1}{2}\cdot 4 \int_\limits{0}^{2\pi}(\cos^2 \varphi)^2 d \varphi =2\int_\limits{0}^{2\pi}\left ( \frac{1+\cos 2\varphi}{2} \right )^2 d \varphi=$$
    $$=2\cdot \frac{1}{4}\int\limits_{0}^{2\pi} (1+\cos 2\varphi)^2 d \varphi= \frac{1}{2}\int_\limits{0}^{2\pi}(1+2\cos 2\varphi+\cos^22\varphi)d \varphi=$$
    $$=\frac{1}{2}\int_\limits{0}^{2\pi} \left ( 1+2\cos2\varphi+\frac{1+\cos4\varphi}{2} \right )d \varphi=$$
    $$=\frac{1}{2}\int_\limits{0}^{2\pi}\left ( \frac{3}{2} + 2\cos2\varphi +\frac{\cos4\varphi}{2} \right )d \varphi=$$
    $$=\frac{1}{2}\left ( \frac{3}{2} \varphi+\sin2\varphi+ \frac{\sin4\varphi}{8} \right )\bigg|_{0}^{2\pi}=$$
    $$=\frac{1}{2}\left ( \frac{3}{2}\cdot 2\pi+\sin4\pi+\frac{\sin8\pi}{8}-\left ( \frac{3}{2}\cdot 0 +\sin 0 + \frac{\sin0}{8} \right ) \right )=$$
    $$=\frac{3\pi}{2}$$

    Ответ: $\displaystyle S=\frac{3\pi}{2}.$

  4. Вычислить площадь фигуры, ограниченной линиями, заданными в полярных координатах $r=\sqrt{3} \cos \varphi,$ $r=\sin \varphi$ $\displaystyle \left ( 0 \leqslant \varphi \leqslant \frac{\pi}{2} \right ).$
    Решение

    Фигура, ограниченная окружностями $r=\sqrt{3} \cos \varphi,$ $r=\sin \varphi ,$ не определена однозначно и поэтому в условии наложено дополнительное ограничение на угол $\displaystyle \left ( 0 \leqslant \varphi \leqslant \frac{\pi}{2} \right ),$ из которого следует, что необходимо вычислить заштрихованную площадь:

    Сначала найдем луч $\displaystyle \varphi=\frac{\pi}{3},$ по которому пересекаются окружности. Приравниваем функции и решаем уравнение:
    $$\sin \varphi=\sqrt{3} \cos \varphi$$
    $$\frac{\sin \varphi}{\cos \varphi} = \sqrt{3}$$
    $$\tg \varphi = \sqrt{3}$$

    Таким образом: $\displaystyle \varphi=\arctg\sqrt{3}=\frac{\pi}{3}$

    Из чертежа следует, что площадь фигуры нужно искать как сумму площадей:

    • На промежутке $\displaystyle \left [0;\frac{\pi}{3}\right ]$ фигура ограничена отрезком луча $\displaystyle \varphi=\frac{\pi}{3}$ и дугой окружности $r=\sin\varphi .$
      $$S_{1}=\frac{1}{2}\int_\limits{0}^{\frac{\pi}{3}}(\sin\varphi)^2d \varphi=\frac{1}{2}\int_\limits{0}^{\frac{\pi}{3}}\sin^2 \varphi d \varphi=$$
      $$=\frac{1}{2}\cdot \frac{1}{2}\int_\limits{0}^{\frac{\pi}{3}}(1-\cos2\varphi)d \varphi=\frac{1}{4}\left ( \varphi-\frac{1}{2}\sin2\varphi \right )\bigg|_{0}^{\frac{\pi}{3}}=$$
      $$=\frac{1}{4}\left ( \frac{\pi}{3}-\frac{1}{2}\sin\frac{2\pi}{3} \right )=\frac{1}{4}\left ( \frac{\pi}{3}-\frac{1}{2}\cdot \frac{\sqrt{3}}{2} \right )=\frac{\pi}{12}-\frac{\sqrt{3}}{16}$$
    • На промежутке $\displaystyle \left [ -\frac{\pi}{3};\frac{\pi}{3}\right ]$ фигура ограничена тем же отрезком луча $\displaystyle \varphi=\frac{\pi}{3}$ и дугой окружности $r=\sqrt{3}\cos\varphi .$
      $$S_{2}=\frac{1}{2}\int_\limits{\frac{\pi}{3}}^{\frac{\pi}{2}}(\sqrt{3}\cos\varphi)^2d \varphi = \frac{3}{2} \int_\limits{\frac{\pi}{3}}^{\frac{\pi}{2}}\cos^2\varphi d \varphi=$$
      $$=\frac{3}{2}\cdot \frac{1}{2}\int_\limits{\frac{\pi}{3}}^{\frac{\pi}{2}}(1+\cos2\varphi)d \varphi= \frac{3}{4}\left ( \varphi + \frac{1}{2} \sin 2\varphi \right )\bigg|_{\frac{\pi}{3}}^{\frac{\pi}{2}}=$$
      $$=\frac{3}{4}\left ( \frac{\pi}{2}+\frac{1}{2}\sin\pi-\left ( \frac{\pi}{3}+\frac{1}{2}\sin\frac{2\pi}{3} \right ) \right )=$$
      $$=\frac{3}{4}\left ( \frac{\pi}{2}+0-\frac{\pi}{3}-\frac{1}{2}\cdot\frac{\sqrt{3}}{2} \right )=\frac{3}{4}\left ( \frac{\pi}{6}-\frac{\sqrt{3}}{4} \right )=\frac{3\pi}{24}-\frac{3\sqrt{3}}{16}$$
    • Пользуемся аддитивностью площади:
      $$S=S_{1}+S_{2}=\frac{\pi}{12}-\frac{\sqrt{3}}{16}+\frac{3\pi}{24}-\frac{3\sqrt{3}}{16}=$$
      $$=\frac{5\pi}{24}-\frac{\sqrt{3}}{4}=\frac{5\pi-6\sqrt{3}}{24}$$

    Ответ: $\displaystyle S=\frac{5\pi-6\sqrt{3}}{24}.$

Площадь в полярных координатах

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме «Площадь в полярных координатах».

См. также:

7.5 Свойства интеграла

$\DeclareMathOperator{\arctg}{arctg}$ 1. Линейность интеграла. Если функции $f$ и $g$ интегрируемы на отрезке $\lbrack a, b\rbrack$, а числа $\alpha, \beta \in \mathbb {R}$, то
$$\int\limits_a^b \lbrack\alpha f\left(x\right) + \beta g\left(x\right)\rbrack\,dx = \alpha\int\limits_a^b f\left(x\right)\,dx + \beta\int\limits_a^b g\left(x\right)\,dx.$$

Это свойство получено нами ранее при доказательстве интегрируемости линейной комбинации.

2. Аддитивность интеграла. Пусть числа $b < a$. Зададим точки $a = x_{0} > x_{1} > \ldots > x_{n} = b,$ выберем точки $\xi_{i} \in \lbrack x_{i+1}, x_{i}\rbrack$ и составим сумму $\displaystyle\sigma = \sum\limits_{i=0}^{n-1} f\left(\xi_{i}\right)\Delta x_{i}.$ Заметим, что в этой сумме все $\Delta x_{i} < 0.$ Ясно, что эту сумму можно получить как интегральную сумму на $\lbrack b, a\rbrack,$ только с противоположным знаком. Это приводит к следующему определению.

Определение. Пусть $b < a$ и функция $f$ интегрируема на $\lbrack b, a\rbrack.$ Тогда по определению полагаем
$$\int\limits_a^b f\left(x\right)\,dx = -\int\limits_b^a f\left(x\right)\,dx.$$
Далее, для каждой функции $f$, определенной в точке $a$, полагаем по определению

$$\int\limits_a^a f\left(x\right)\,dx = 0.$$

Теорема. Пусть $a, b, c$ — произвольные точки на действительной прямой. Если функция $f$ интегрируема на наибольшем из отрезков с концами в двух из этих точек, то она интегрируема также и на двух других отрезках, и справедливо равенство
$$\int\limits_a^b f\left(x\right)\,dx = \int\limits_a^c f\left(x\right)\,dx + \int\limits_c^b f\left(x\right)\,dx.$$

Пусть, например, $a < c < b$ и функция $f$ интегрируема на $\lbrack a, b\rbrack.$ Тогда, по доказанному ранее свойству 4, она интегрируема на отрезках $\lbrack a, c\rbrack$ и $\lbrack c, b\rbrack.$ Возьмем произвольное разбиение $a = x_{0} < x_{1} < \ldots < x_{n} = b$, такое, что $c$ является одной из точек деления. Выберем промежуточные точки $\xi_{i}$ и рассмотрим интегральную сумму $\displaystyle\sigma = \sum\limits_{i=0}^{n-1} f\left(\xi_{i}\right)\Delta x_{i}$. Если $c = x_{j}$, то эту сумму разобьем на две: $\displaystyle\sigma = \sum\limits_{i=0}^{j-1} f\left(\xi_{i}\right)\Delta x_{i} + \sum\limits_{i=j}^{n-1} f\left(\xi_{i}\right)\Delta x_{i}$. При $d(\Pi) \to 0$ первая сумма справа стремится к $\displaystyle\int\limits_a^c f\left(x\right)\,dx$, вторая — к $\displaystyle\int\limits_c^b f\left(x\right)\,dx$, а сумма $\sigma$ стремится к $\displaystyle\int\limits_a^b f\left(x\right)\,dx$. Переходя к пределу при $d(\Pi) \to 0$, получим требуемое равенство.
Пусть теперь $c < a < b$. Тогда, по уже доказанному,
$$\int\limits_c^b f\left(x\right)\,dx = \int\limits_c^a f\left(x\right)\,dx + \int\limits_a^b f\left(x\right)\,dx.$$
Отсюда следует
$$\int\limits_a^b f\left(x\right)\,dx = \int\limits_c^b f\left(x\right)\,dx-\int\limits_c^a f\left(x\right)\,dx = \int\limits_a^c f\left(x\right)\,dx + \int\limits_c^b f\left(x\right)\,dx$$
и теорема доказана полностью.

3. Интеграл от модуля. Пусть функция $f$ интегрируема на отрезке $\lbrack a, b\rbrack \left(a < b\right)$. Тогда
$$\left|\int\limits_a^b f\left(x\right)\,dx\right| \leqslant \int\limits_a^b \left|f\left(x\right)\right| \,dx.$$

Действительно, интегрируемость модуля интегрируемой функции доказана ранее. Докажем неравенство. Для этого выберем произвольное разбиение отрезка $\lbrack a, b\rbrack.$ Тогда для интегральных сумм будем иметь следующее неравенство:
$$\left|\sum\limits_{i=0}^{n-1} f\left(\xi_{i}\right)\Delta x_{i}\right| \leqslant \sum\limits_{i=0}^{n-1} \left|f\left(\xi_{i}\right)\right|\Delta x_{i}.$$
При стремлении к нулю диаметра разбиения интегральная сумма под знаком модуля в левой части стремится к к $\displaystyle\int\limits_a^b f\left(x\right)\,dx$, а сумма справа стремится к $\displaystyle\int\limits_a^b \left|f\left(x\right)\right|\,dx$. Переходя к пределу при $d(\Pi) \to 0$, получаем требуемое неравенство для интегралов.

4. Монотонность интеграла. Пусть функции $f$ и $g$ интегрируемы на $\lbrack a, b\rbrack \left(a < b\right)$ и $f\left(x\right)\leqslant g\left(x\right)$ для всех $x \in \lbrack a, b\rbrack.$ Тогда
$$\int\limits_a^b f\left(x\right)\,dx \leqslant \int\limits_a^b g\left(x\right)\,dx.$$

Действительно, возьмем произвольное разбиение отрезка $\lbrack a, b\rbrack$ и выберем промежуточные точки $\xi_{i}$. Тогда $f\left(\xi_{i}\right)\leqslant g\left(\xi_{i}\right) \left(i = 0, 1, \ldots, n-1\right)$. Умножая эти неравенства на $\Delta x_{i} > 0$ и складывая, получим
$$\sum\limits_{i=0}^{n-1} f\left(\xi_{i}\right)\Delta x_{i}\leqslant\sum\limits_{i=0}^{n-1} g\left(\xi_{i}\right)\Delta x_{i}.$$
Отсюда, устремляя к нулю диаметр разбиения, получаем требуемое неравенство.

Следствие 1. Пусть $f$ — неотрицательная интегрируемая функция на $\lbrack a, b\rbrack \left(a < b\right)$. Тогда
$$\int\limits_a^b f\left(x\right)\,dx \geqslant 0.$$

Следствие 2. Если интегрируемая функция $f$ строго положительна на $\lbrack a, b\rbrack \left(a < b\right)$, то и $$\int\limits_a^b f\left(x\right)\,dx > 0.$$

Действительно, в силу критерия Лебега , найдется точка $x_{0}\in\lbrack a, b\rbrack$, в которой функция непрерывна . Поскольку $f\left(x_0\right) > 0$, то найдется такое $\delta > 0$, что $\displaystyle f\left(x\right) > \frac{1}{2}f\left(x_0\right)$ для всех $x \in \left(x_0-\delta, x_0 + \delta\right) \cap \lbrack a, b\rbrack.$ Выберем отрезок $\lbrack\alpha, \beta\rbrack \subset \left(x_0-\delta, x_0 + \delta\right) \cap \lbrack a, b\rbrack, a\leqslant\alpha < \beta\leqslant b$.Тогда, в силу свойства аддитивности интеграла, получим $$\int\limits_a^b f\left(x\right)\,dx = \int\limits_a^\alpha f\left(x\right)\,dx + \int\limits_\alpha^\beta f\left(x\right)\,dx + \int\limits_\beta^b f\left(x\right)\,dx.$$ Первый и третий интегралы справа неотрицательны в силу следствия, а для второго интеграла, учитывая неравенство $\displaystyle f\left(x\right) \geqslant \frac{1}{2} f\left(x_0\right)$, из свойства монотонности интеграла получим $$\int\limits_\alpha^\beta f\left(x\right)\,dx \geqslant \int\limits_\alpha^\beta \frac{1}{2}f\left(x_0\right)\,dx = \frac{1}{2}f\left(x_0\right)\left(\beta-\alpha\right) > 0.$$
Таким образом, $\displaystyle\int\limits_a^b f\left(x\right)\,dx > 0$.

Следствие 3.Пусть функция $f$ интегрируема на $\lbrack a, b\rbrack$ и $m \leqslant f\left(x\right) \leqslant M$ для всех $x \in \lbrack a, b\rbrack$. Тогда
$$ \begin{equation}\label{prop_of_int_first}m\left(b-a\right) \leqslant \int\limits_a^b f\left(x\right)\,dx \leqslant M\left(b-a\right)\end{equation}.$$

Это следствие сразу вытекает из свойства монотонности интеграла.

Замечание. В условиях следствия 3 найдется такое число $\mu \in \lbrack m, M\rbrack$, что
$$\int\limits_a^b f\left(x\right)\,dx = \mu\left(b-a\right).$$

Действительно, положим $\displaystyle\mu = \frac{1}{\left(b-a\right)}\int\limits_a^b f\left(x\right)\,dx$. Тогда, по следствию 3, $m \leqslant \mu \leqslant M$.

Отметим, что при $a > b$ в такой формулировке это замечание остается в силе, в то время как знаки неравенств в $\eqref{prop_of_int_first}$ меняются на противоположные.

Следствие 4. Если функция $f$ непрерывна на $\lbrack a, b\rbrack$, то найдется такая точка $\xi \in \lbrack a, b\rbrack$, что
$$ \int\limits_a^b f\left(x\right)\,dx = f\left(\xi\right)\left(b-a\right).$$

Действительно, пусть $m$ и $M$ соответственно нижняя и верхняя грани функции $f$ на отрезке $\lbrack a, b\rbrack$, они достигаются в силу первой теоремы Вейерштрасса. По уже доказанному, найдется точка $\mu \in \lbrack m, M\rbrack$, такая, что $\displaystyle\int\limits_a^b f\left(x\right)\,dx = \mu \left(b-a\right)$. По теореме Больцано-Коши о промежуточном значении, найдется такая точка $\xi \in \lbrack a, b\rbrack$, что $f\left(\xi\right) = \mu.$

Замечание. Следствие 4 иногда называют теоремой о среднем значении. Оно тесно связано с теоремой Лагранжа, которую также называют теоремой о среднем значении в дифференциальном исчислении.

Примеры решения задач

Данные примеры читателю рекомендуется решить самому в качестве тренировки.

  1. Оценить интеграл $\displaystyle\int\limits_{0}^{2\pi} \frac{\,dx}{\sqrt{5 + 2\sin{x}}}$.
    Решение

    Оценим подынтегральную функцию:
    $$-1 \leqslant \sin{x} \leqslant 1 \Rightarrow$$
    $$3 \leqslant 5 + 2\sin{x} \leqslant 7 \Rightarrow$$
    $$\sqrt{3} \leqslant \sqrt{5 + 2\sin{x}} \leqslant \sqrt{7} \Rightarrow$$
    $$\frac{1}{\sqrt{7}} \leqslant \frac{1}{\sqrt{5 + 2\sin{x}}} \leqslant \frac{1}{\sqrt{3}}.$$
    Отсюда и из монотонности интеграла следует, что
    $$\int\limits_0^{2\pi} \frac{\,dx}{\sqrt{7}} \leqslant \int\limits_0^{2\pi}\frac{\,dx}{\sqrt{5 + 2\sin{x}}}\leqslant\int\limits_0^{2\pi} \frac{\,dx}{\sqrt{3}}.$$
    Таким образом,
    $$\frac{2\pi}{\sqrt{7}} \leqslant \int\limits_0^{2\pi}\frac{\,dx}{\sqrt{5 + 2\sin{x}}}\leqslant\frac{2\pi}{\sqrt{3}}.$$

  2. Найти определенный интеграл $\displaystyle\int\limits_0^2 \left|1-x\right|\,dx$.
    Решение

    example
    Из аддитивности интеграла
    $$\int\limits_0^2 \left|1-x\right|\,dx = \int\limits_0^1 \left|1-x\right|\,dx + \int\limits_1^2 \left|1-x\right|\,dx =$$ $$= \int\limits_0^1 \left(1-x\right)\,dx + \int\limits_1^2 \left(x-1\right)\,dx = \int\limits_0^1 \,dx-\int\limits_0^1 x \,dx + \int\limits_1^2 x \,dx-\int\limits_1^2 \,dx =$$ $$= 1-0-\left.\frac{x^2}{2}\right|_0^1 + \left.\frac{x^2}{2}\right|_1^2-(2-1) = 1-\frac{1}{2} + 0 + \frac{2^2}{2}-\frac{1}{2}-1 = 1.$$

  3. Найти определенный интеграл $\displaystyle\int\limits_0^3 \frac{x^4}{x^2 + 1}\,dx$
    Решение

    $$\int\limits_0^3 \frac{x^4}{x^2 + 1}\,dx = \int\limits_0^3 \frac{\left(x^4 -1\right) + 1}{x^2 + 1}\,dx =$$ $$= \int\limits_0^3 \frac{\left(x^2-1\right)\left(x^2 + 1\right) + 1}{x^2 + 1}\,dx = \int\limits_0^3 \left(x^2-1 + \frac{1}{x^2 + 1}\right)\,dx.$$
    Воспользовавшись свойством линейности интеграла, получим
    $$\int\limits_0^3 \left(x^2-1 + \frac{1}{x^2 + 1}\right)\,dx = \int\limits_0^3 x^2 \,dx-\int\limits_0^3 \,dx + \int\limits_0^3 \frac{\,dx}{x^2 + 1} =$$ $$= \left.\frac{x^3}{3}\right|_0^3-(3-0) + \left.\arctg{x}\right|_0^3 = 9-0-3+ \arctg{3}-\arctg{0} =$$ $$=6 + \arctg{3}.$$

  4. Не вычисляя интегралов, определить какой из них больше: $\displaystyle\int\limits_2^3 e^{-x}\sin{x}\,dx$ или $\displaystyle\int\limits_2^3 e^{-x^2}\sin{x}\,dx$.
    Решение

    Сравним подынтегральные функции. Пусть $f\left(x\right) = e^{-x}\sin{x}$, $g\left(x\right) = e^{-x^2}\sin{x}$.
    $$f\left(x\right)-g\left(x\right) = e^{-x}\sin{x}-e^{-x^2}\sin{x} = \sin{x}\left(e^{-x}-e^{-x^2}\right) =$$ $$= e^{-x}\sin{x}\left(1-e^{-x^2 + x}\right).$$
    На промежутке $\lbrack 2, 3\rbrack$ функции $\sin{x}$ и $e^{-x}$ принимают положительные значения (поскольку синус на $\lbrack 0, \pi\rbrack$ положительный). Значит нам достаточно сравнить с нулем выражение $1-e^{-x^2 + x}$. Поскольку на $\lbrack 2, 3\rbrack$ $x^2 > x$, то $-x^2 + x < 0$, а значит $e^{-x^2 + x} < 1$. $1-e^{-x^2 + x} > 0$, из чего следует, что $f\left(x\right) > g\left(x\right)$.
    Ответ:
    $$\int\limits_2^3 e^{-x}\sin{x}\,dx > \int\limits_2^3 e^{-x^2}\sin{x}\,dx.$$

  5. Найти среднее значение функции на данном отрезке: $\sin{x}$, $\displaystyle 0 \leqslant x \leqslant \frac{\pi}{2}$.
    Решение

    Воспользуемся четвертым следствием из свойства монотонности интеграла. Средним значением функции $f\left(x\right)$ на отрезке $\lbrack a, b\rbrack$ называется число $\displaystyle\mu = \frac{1}{\left(b-a\right)}\int\limits_a^b f\left(x\right)\,dx.$
    Из этого следует:
    $$\mu = \frac{1}{\left(\frac{\pi}{2}-0\right)} \int\limits_0^{\frac{\pi}{2}} \sin{x}\,dx = \left.-\frac{2}{\pi}\cos{x}\right|_0^{\frac{\pi}{2}} = -\frac{2}{\pi}(0-1) = \frac{2}{\pi}.$$
    Ответ: $\displaystyle\frac{2}{\pi}.$

Смотрите также

  1. Тер-Крикоров А. М., Шабунин М. И. Курс математического анализа: Учеб. пособие для вузов. – 3-е изд., исправл. / А. М. Тер-Крикоров, М. И. Шабунин. – Москва: ФИЗМАТЛИТ, 2001. – 672 с. — С. 326-332.
  2. Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. — 5-е изд., перераб. и доп. — Москва: Дрофа, 2003. — 703 с. — С. 570-582.
  3. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 2 / Г. М. Фихтенгольц. — 5-е изд., стереотип. — Москва: Физматгиз, 1970.- 800 с. — С. 108-116.

Свойства интеграла

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме «Свойства интеграла»

Вычисления площадей плоских областей, ограниченных кривыми, заданными параметрически и в полярных координатах

Параметрическое задание

Пусть границами криволинейной трапеции являются прямые [latex]x=a, x=b[/latex], ось абсцисс и параметрически заданная кривая

[latex] \left\{\begin{matrix} y=\varphi (t); \\ x=\psi (t); \end{matrix} \right. [/latex]

Причем: функции [latex]x[/latex] и  [latex]y[/latex] непрерывны на интервале [latex][a,b][/latex], [latex]a<b[/latex]; [latex]x=\varphi (t)[/latex] монотонно возрастает на этом интервале и [latex]\varphi (\alpha )=a, \psi (\beta )=b[/latex].

Тогда площадь криволинейной трапеции находится по формуле [latex] S(G)=\int\limits_\alpha ^\beta \psi (t)*\varphi ‘(t)dt [/latex]

Эта формула получается из формулы площади криволинейной трапеции $latex S(G)=\int\limits_\alpha ^\beta \psi (t)*\varphi ‘(t)dt $ подстановкой: $latex S(G)=\int\limits_\alpha^\beta \psi (t)*\varphi ‘(t)dt $

Если функция является монотонно убывающей на интервале [latex][\beta ,\alpha], \beta < \alpha[/latex], то формула примет следующий вид: [latex] S(G)=-\int\limits_{\beta }^{\alpha }\psi (t)*\varphi ‘(t)dt [/latex]

Что делать, если нам дана не криволинейная трапеция? Свести данную фигуру к ней. Поделить её на части (прямыми, параллельными абсциссе и ординате), площадь которых уже можно будет посчитать описанным выше способом.

Примеры:

Спойлер

Дан эллипс [latex]\left\{\begin{matrix} x=2\cos t\\y=3\sin t \end{matrix}\right.[/latex]. Посчитать его площадь.

Делим эллипс абсциссой и ординатой на 4 симметричные части.

Image1

Очевидно, их площади равны — а площадь эллипса получается равной площади верхней правой четверти, умноженной на 4.

Считаем её. Она равна
[latex]-\int\limits_{0}^{\frac{\pi }{2}}3\sin t*(2\cos )’ dt=[/latex][latex]6\int\limits_{0}^{\frac{\pi }{2}}\sin ^{2}t dt=[/latex][latex]3\int\limits_{0}^{\frac{\pi }{2}}(1-\cos 2t)dt=[/latex][latex]\frac{3\pi }{2}[/latex]

Умножаем площадь одной четверти на 4, и:

Ответ — [latex]6\pi [/latex]

[свернуть]

Спойлер

Дана линия,заданная функциями [latex]x=2t-t^2[/latex] и [latex]y=2t^2-t^3. [/latex]
Найти площадь ограниченной ею и осью ОХ фигуры.
Находим производную [latex]y'[/latex], она равна [latex](2t^2-t^3)’=4t-3t^3[/latex].
Находим [latex]t[/latex], при которых наша линия пересекается с осью [latex]OX[/latex]. Это [latex]t=0[/latex] и [latex]t=2[/latex]. Составляем формулу площади:

[latex]S=\int\limits_{0}^{2}(2t-t^2)(4t-3t^2)dt[/latex];

[latex]S=\int\limits_{0}^{2}(3t^4-10t^3+8t^2)dt[/latex];

[latex]S=\frac{3t^5}{5}-\frac{5t^4}{2}+\frac{8t^3}{3}|^2_0[/latex];

[latex]S=\frac{8}{15}[/latex];
Ответ — [latex]\frac{8}{15}[/latex].

[свернуть]

Полярное задание

А что, если функции, ограничивающие нашу область, заданы полярно?
Есть простая формула: $$ S=\frac{1}{2} \int\limits_{\alpha }^{\beta }r^{2}d\varphi $$ Здесь [latex]\alpha [/latex] и [latex]\beta [/latex] — значения углов, ограничивающих фигуру, [latex]r[/latex] — расстояние от начала координат до точки, [latex]\varphi [/latex] — угол. Уравнение функции в полярных координатах — [latex]r=f(\varphi )[/latex]

Помните: в полярных координатах тоже стоит делить область на простые части.

Пример:

Спойлер

Найдём площадь круга. Задан уравнением [latex]r=a[/latex].

Площадь круга в первом квадранте — $$ S=\frac{1}{2} \int\limits_{0 }^{\frac{\pi }{2} }a^{2}d\varphi $$

Преобразуем этот интеграл:

[latex]S=\frac{1}{2}*\frac{\pi }{2}*a^{2}=\frac{\pi a^{2}}{4}[/latex].

Площадь всего круга — учетверённая площадь одной четверти, которую мы и подсчитали выше.

Тут должна быть картинка

[latex]S= \pi a^{2}[/latex]

[свернуть]

Источники:

Тест

Вычисления площадей плоских областей, заданных параметрически и в полярных координатах

В этом тесте предоставлены упражнения по пройденной теме. Если внимательно изучили материал, следовали всем данным ссылкам и рекомендациям,то вам не составит труда выполнить эти задания.

Таблица лучших: Вычисления площадей плоских областей, заданных параметрически и в полярных координатах

максимум из 14 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Задачи, которые приводят к понятию определенного интеграла Римана


Задача 1. (О вычислении пути)


Условие. Предположим, что $latex f(x)$ — скорость движения материальной точки по оси $latex OY$ и $latex f(x)>0$. Необходимо вычислить путь, пройденный материальной точкой за промежуток времени от $latex x=a$ до $latex x=b$.

Решение. Разобьём рассматриваемый промежуток времени от $latex a$ до $latex b$ на малые промежутки  (рис.3)  $$a=x_{0}<x_{1}<x_{2}<…<x_{n-1}<x_{n}=b$$ На указанном промежутке скорость приближенно можно считать равной и постоянной, например, $latex f(x_{k})$. Получаем, что путь, пройденный материальной точкой за время $latex \triangle x_{k}=x_{k}-x_{k-1}$ приближенно равен $latex f(x_{k})\triangle x_{k}$. Следовательно, путь пройденный от $latex a$ до $latex b$ приближенно равен:

$latex {S\approx f(x_{1})\triangle x_{1}+f(x_{2})\triangle x_{2}+…+f(x_{n})\triangle x_{n}}$.                                                (1)

При уменьшении всех промежутков времени мы будем получать более точное значение пути. И так, чтобы получить точное значение пути, перейдём к пределу в формуле (1) :

$latex {S\approx \lim\limits_{\triangle x_{k}\to 0 }f(x_{1})\triangle x_{1}+f(x_{2})\triangle x_{2}+…+f(x_{n})\triangle x_{n}}$.                                       (2)


Задача 2. (О вычислении площади криволинейной трапеции)


В предыдущей задаче мы вычислили путь, пройденный материальной точкой за промежуток времени от $latex x=a$ до $latex x=b$, перейдя к пределу. В математике предел вида (2) называется определённым интегралом(или интегралом Римана) от функции $latex f(x)$  в пределах от $latex a$ до $latex b$ и обозначается: $$\underset{a}{\overset{b}{\int}}f(x)dx$$

Рассмотрим рис.1 рисунок-1   Сумма вида (1) равна сумме  площадей прямоугольников с основаниями $latex \triangle x_{k}$  и высотами $latex f( x_{k})$. Т.е., данная сумма равна площади изображенной на рис.1 ступенчатой фигуры, обозначенной светло- и тёмно-зеленым цветом. При стремлении к нулю длин всех отрезков $latex \triangle x_{k}$ площадь указанной ступенчатой фигуры будет стремиться к площади отмеченной на рисунке ступенчатой фигуры, лежащей под графиком функции $latex y=f(x)$ на отрезке $latex [a;b]$.

Эту криволинейную фигуру часто называют криволинейной трапецией . Аналогично задачи 1, перейдём к пределу:

$latex {S=\lim\limits_{\lambda \to 0 }f(x_{1})\triangle x_{1}+f(x_{2})\triangle x_{2}+…+f(x_{n})\triangle x_{n}}$ , где  $latex \lambda = \max \triangle x_{k}$

и $latex S$ -площадь, отмеченной на рисунке (1) фигуры (криволинейной трапеции).

Вывод: площадь криволинейной трапеции можно вычислить по формуле:

[latex] S=\lim\limits_{\lambda \to 0 } \sum\limits_{n=1}^{k}f(x_{n})\triangle x_{n}[/latex] [latex]=\int_{a}^{b}f(x)dx[/latex]                                                                 (3)

Рассмотрим пример:

Условие. Вычислить площадь $latex S$, заключенную между графиком функции $latex y=\sin x$ на отрезке от $latex 0$ до $latex \pi$ и осью $latex OX$ (рис. 2)

рисунок-3

Решение. По формуле (3) предыдущей задачи получаем: $${S=\underset{0}{\overset{\pi}{\int}}\sin x\ dx}$$

Так как одной из первообразных функции $latex f(x)=\sin x$ является функция $latex \Phi (x)=-\cos x$, то по формуле Ньютона -Лейбница получим: $$ S={{\underset{0}{\overset{\pi}{\int}}\sin x\ dx}=(-\cos \pi)-(-\cos 0) }=2$$


Задача 3. (О вычислении массы линейного стержня по известной плотности)


Пусть задан прямолинейный стержень, который меняется вдоль оси (рис.3). default2
$latex \rho =\rho\ (x)$
Если бы плотность во всех участках стержня была бы одинаковой (однородный стержень), то масса m стержня :
$latex m=\rho (b-a)$, $latex \rho =const$
Но, так как плотность не является постоянной, то разобьем [a,b] на однородные участки (участки с одинаковой плотностью) :
$latex a=x_{o}<x_{1}<x_{2}<…<x_{n-1}<x_{n}=b$
$latex \forall \ \xi _{i}\in \triangle x_{i}$ , где $latex \triangle x_{i}=x_{i}-x_{i-1} $ $latex i=\overline{1,n}$
Масса каждого отрезка : $latex m\approx \rho (\xi _{i})\cdot \triangle x_{i}$ $latex
\Rightarrow$ масса всего стержня равна пределу суммы $latex {m=\lim\limits_{x \to 0}\sum\limits_{i=1}^{n}\rho (\xi _{i})\triangle x_{i}}$

Замечание

В просмотренной задаче речь идёт о рассмотрении пределов сумм вида $latex {\sum\limits_{i=1}^{n}\rho (\xi _{i})\triangle x_{i}}$, которые называются интегральными суммами


 

Список литературы:

  • А.Г. Попов, П.Е. Данко, Т.Я. Кожевникова «Мир и образование» 2005 г. (Издание 6-е. Часть 1)  стр. 243-258
  • Лысенко З.М. Конспект лекций по курсу математического анализа.

Тест (Задачи, которые приводят к понятию определенного интеграла Римана)

  1. Задача о вычислении площади криволинейной трапеции.
  2. Задача о вычислении массы линейного стержня по известной плотности.
  3. Задача о вычислении пути, пройденного материальной точкой.

Таблица лучших: Тест (Задачи, которые приводят к понятию определенного интеграла Римана)

максимум из 8 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных