Оценка погрешности формулы Тейлора

Если остаток в формуле Тейлора $latex |r_{n}(x_{0},x)|< \alpha _{0} &s=1 $,то формулу Тейлора для многочлена можно записать так: $latex f(x)\approx f(x_{0})+\frac{f'(x_{0})}{1!}(x-x_{0})+\frac{f»(x_{0})}{2!}(x-x_{0})^{2}+…+\frac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n} &s=1 $.

В свою очередь остаточный член: $latex r_{n}(x_{0},x)=\frac{f^{(n+1)}(xi )}{(n+1)!}(x-x_{0})^{n+1} &s=1 $ — определяет погрешность формулы.

Задание:

Записать разложение по формуле Маклорена ($latex x_{0}=0 $) с остатком в форме Лагранжа. Оценить абсолютную погрешность.

Пример 1

$latex \sin x=x-\frac{x^{3}}{6} &s=2 $, причём $latex |x| \leq \frac{1}{2} &s=2 $

Решение

Исходная формула:

$latex \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-…-\frac{x^{2n+1}}{(2n+1)!} &s=2 $

Обобщим запись:

$latex \sin x=\sum\limits_{k=0}^{n} \frac{(-1)^{k}x^{2k+1}}{(2k+1)!}+\underset{x\rightarrow 0}{o(x^{2k+1})} &s=2 $

Выясним промежуток для переменной:

$latex x \in \left ( -\frac{1}{2};\frac{1}{2} \right ) &s=2 $

Запишем разложение по формуле Тейлора:
$latex \sin x=x-\frac{x^{3}}{3!}+\frac{\sin^{(4)}( x )}{4!}x^{4}=x-\frac{x^{3}}{3!}+\frac{\sin( x +4\frac{\pi }{2} )}{4!}x^{4}=x-\frac{x^{3}}{3!}+\frac{\sin( x +2\pi )}{4!}x^{4} &s=2 $

Пользуясь правилом приведения:

$latex \sin( x +2\pi )=\sin x &s=2 $
$latex \sin x=x-\frac{x^{3}}{3!}+\frac{\sin x}{4!}x^{4} &s=2 $

Оценим последнее слагаемое:

$latex \left | \frac{\sin x}{4!}x^{4} \right |= \frac{\left | \sin x \right |}{4!}\left | x^{4} \right |\leq \frac{\left | x^{4} \right |}{4!}\leq \frac{\frac{1}{2}}{4!}=\frac{1}{16\cdot 1\cdot 2\cdot 3\cdot 4}=\frac{1}{384} &s=2 $

Пример 2

$latex e^{x}\simeq1+x+\frac{x^{2}}{2!}+…+\frac{x^{n}}{n!} &s=2 $, $latex 0\leq x\leq 1 &s=2 $

Решение

Выпишем и оценим остаток в формуле Тейлора:

$latex |r_{n} ( x_{0},x )|=\left | \frac{e^{x }}{(n+1)!}x^{n+1} \right |\leq \left | \frac{e^{x }}{(n+1)!} \right | &s=2 $

Учитывая промежуток для переменной, запишем и оценим:
$latex \begin{Bmatrix}
x_i \in \left ( 0;1 \right )\
e\approx 2,71
\end{Bmatrix}\Rightarrow \left | \frac{e^{x_i }}{(n+1)!} \right |\leq \frac{3}{(n+1)!} &s=2 $

Пример 3

$latex \sqrt{1+x}\approx 1+\frac{x}{2}-\frac{x^{2}}{8} &s=2 $, $latex 0\leq x\leq 1 &s=2 $

Решение

Запишем разложение:

$latex \sqrt{1+x}=1+\frac{\alpha }{1!}x+\frac{\alpha (\alpha -1)}{2!}x^{2}+\frac{f^{(3)}(x_i)}{3!}x^{3} &s=2 $

Найдём производную:

$latex f'(x)=\frac{1}{2\sqrt{1+x}} &s=2 $
$latex f^{(2)}(x)=\frac{1}{2}((1+x)^{-\frac{1}{2}})’=-\frac{1}{4}(1+x)^{-\frac{3}{2}} &s=2 $
$latex f^{(3)}(x)=(-\frac{1}{4})(-\frac{3}{2})(1+x)^{-\frac{5}{2}}=\frac{3}{8}(1+x)^{-\frac{5}{2}} &s=2 $
$latex f^{(3)}(x_i )=\frac{3}{8}(1+x_i )^{-\frac{5}{2}} &s=2 $

Оценим последнее слагаемое:

$latex \left | \frac{3}{8}\cdot \frac{(1+x_i )^{-\frac{5}{2}}}{3!} x^{3}\right |=\left |\frac{(1+x_i )^{-\frac{5}{2}}}{16} x^{3} \right |\leq \frac{2^{-\frac{5}{2}}}{16}\cdot 1< \frac{1}{16} &s=2 $

Источники:

Остатки формулы Тейлора



Остаток формулы Тейлора (стандартное обозначение- $latex r_{n} (x_{0},x) $) можно определить, как:
  1. Погрешность, которая возникает при замене функции $latex y=f(x) $ многочленом $latex P_{n}(x_{0},x) .$ Если выполнены условия теоремы о представлении формулы $latex f$ в виде многочлена Тейлора, то для значений $latex x$ из окрестности точки $latex x_{0},$ для которых погрешность $latex r_{n}(x_{0},x) $ достаточно мала, многочлен $latex P_{n}(x_{0},x) $ дает приближенное представление функции.
  2. (На рисунке) Разница значений функции $latex f(x) $ и выражающим её многочленом Тейлора в точке $latex x_{0} :$$latex f(x)-P_{n}(x_{0},x)=r_{n}(x_{0},x) $ (уклонение полинома $latex P_{n} $ от функции $latex f(x) $).

r(x0,x)

Существует 3 основных представления остаточного члена:

  1. В форме Лагранжа: $$ \large r_{n} (x_{0},x)=\frac{f^{(n+1)}(x+\theta(x-x_{0}))}{(n+1)!}(x-x_{0})^{n+1} , \ $$$latex 0< \theta < 1 .$$$\ $$
  2. В форме Коши: $$\large r_{n} (x_{0},x) =\frac{f^{(n+1)}(x_{0}+\theta_{1}(x-x_{0}))}{n!}(1-\theta_{1}(x-x_{0}))^{n}(x-x_{0})^{n+1} , \ $$$latex 0< \theta_{1} < 1 .$$$\ $$
  3. В форме Пеано: $$ \large r_{n} (x_{0},x) =o((x-a)^{n}) , \ $$ при $latex x\rightarrow a .$

Примеры:

  1. Написать разложение функции $latex e^{\sin (x)} $ до $latex x^{3} $ с остатком в форме Пеано.
    Спойлер

    $$ e^{\sin (x)}=1+\sin (x)+\frac{1}{2} \sin ^{2}(x)+\frac{1}{6}\sin ^{3}(x)+o(\sin ^{3}(x)) $$ Ввиду эквивалентности бесконечно малых $latex x $ и $latex \sin (x) $ это все равно, что $latex o(x^{3}) ,$ то есть:
    $latex e^{\sin (x)}=1+\sin (x)+ $$latex \frac{1}{2} \sin ^{2}(x)+ $$latex \frac{1}{6} \sin ^{3}(x)+o(x^{3}) \sin(x)= $$latex x-\frac{1}{6}x^{3}+o(x^{4}) \Rightarrow $$latex e^{sin(x)}=1+(x-\frac{1}{6} x^{3} )+ $$latex \frac{1}{2}x^{2}+\frac{1}{6}x^{3}+o(x^{3}) $
    Член с $latex x^{3} $ аннулируется и, окончательно, имеем: $$ e^{ \sin (x)}=1+x+\frac{1}{2}x^{2}+o(x^{3}) $$ $$\ $$

  2. [свернуть]

  • Вычислить предел, используя формулу Тейлора: $$ \lim\limits_{x\rightarrow 0}\frac{\sqrt{1+2\cdot \mathrm{tg} (x)}-e^x+x^2}{\mathrm{arctg} (x)-\sin (x)} $$
    Спойлер

    Разложим числитель по формуле Тейлора: $$\mathrm{tg} (x)=x+\frac{x^3}{3}+o(x^3),\,\, x\rightarrow 0; \ $$ $$ 2 \cdot \mathrm{tg} (x)=2\cdot x+ \frac {2\cdot x^{3}}{3}+o(x^{3}),\,\, x\rightarrow 0;$$ $$\sqrt {1+t}=(1+t)^{\frac {1}{2}}=1+\frac {1}{2}t-\frac {1}{8}t^2+\frac {1}{16}t^{3}+o(t^{3}),\,\, t\rightarrow 0;$$ Таким образом: $latex \sqrt{1+2\cdot \mathrm{tg} (x)}= $$latex 1+\frac{1}{2}2 \cdot \mathrm{tg} (x)- $$latex \frac{1}{8}(2 \mathrm{tg} (x))^2+$$latex \frac{1}{16}(2 \cdot \mathrm{tg} (x))^3+o(\mathrm{tg} ^{3} (x))= $$latex 1+\mathrm{tg} (x)-\frac{1}{2} \mathrm{tg} ^{2} x+$$latex \frac{1}{2} \mathrm{tg} ^3 (x)+o(\mathrm{tg} ^{3} (x))= $$latex 1+x+\frac{x^3}{3}-\frac{1}{2}x^2+\frac{x^3}{2}+o(x^3)= $$latex 1+x-\frac{1}{2}x^2+\frac{5}{6}x^3+o(x^3) . \ $
    Учитывая, что $latex e^x=1+x+\frac{x^2}{2}+\frac{x^3}{6}+o(x^3) ,$ находим, по формуле Тейлора ($latex x_{0}=0$) числитель дроби $latex \sqrt{1+2\cdot \mathrm{tg} (x)}-e^x+x^2= $$latex 1+x-\frac{1}{2}x^2+$$latex \frac{5}{6}x^3-1-x-$$latex \frac{x^2}{2}-$$latex \frac{x^3}{6}+$$latex x^2+o(x^3)= $$latex \frac{2}{3}x^3+o(x^3),\, x\rightarrow 0 .$
    Далее раскладываем знаменатель: $latex \sin x= x-$$latex \frac{x^3}{6}+o(x^3);\ $$latex \arcsin x=x+$$latex \frac{x^3}{6}+o(x^3). $ Отсюда $latex \arcsin(x)- \sin (x) = $$latex \frac {x ^{3}}{3} + o (x ^{3}) $ Таким образом, дробь представляется в виде: $$\frac{\frac{2}{3}x^3+o(x^3)}{\frac{1}{3}x^3+o(x^3)}$$ Следовательно:
    $$\lim\limits_{x\rightarrow 0} \frac {\sqrt {1+2\cdot \mathrm{tg} (x)}-e^{x}+x^{2}}{ \mathrm{arctg} (x)-\sin (x)}=\lim\limits_{x\rightarrow 0} \frac{\frac{2}{3}x^3+o(x^3)}{\frac{1}{3}x^3+o(x^3)} = 2 $$

    [свернуть]
  • Список литературы:

    1. Г.М.Фихтенгольц, Курс дифференциального и интегрального исчисления, том 1, 1962 год, стр. 246-257.
    2. Тер-Крикоров А. М. Шабунин М. И. «Курс математического анализа» 3 издание 2001 года, стр. 158-172
    3. Л. Д. Кудрявцев «Курс математического анализа 1» стр. 339-353
    4. Варятанян Г. М. Математический анализ. Часть 1(3). 2009 с. 44-46

    Формула Тейлора. Виды остаточных членов.


    Таблица лучших: Остатки формулы Тейлора

    максимум из 30 баллов
    Место Имя Записано Баллы Результат
    Таблица загружается
    Нет данных