М1343. Пересечение трёх хорд окружности

Задача из журнала «Квант» (1992 год, 11 выпуск)

Условие

Три хорды окружности $\gamma$ попарно пересекаются в точках $A$, $B$, $C$. Построим еще три окружности: одна касается сторон угла $CAB$ и окружности $\gamma$ (изнутри) в точке $A_{1}$, вторая — сторон угла $ABC$ и окружности $\gamma$ (изнутри) в точке $B_{1}$, третья — сторон угла $ACB$ и окружности $\gamma$ (изнутри) в точке $C_{1}$. Докажите, что три отрезка $AA_{1}$, $BB_{1}$ и $CC_{1}$ пересекаются в одной точке (рис. 1)

Решение

Пусть $\gamma_{0}$ — окружность, вписанная в треугольник $ABC$, $I$ — ее центр, $K$ — центр окружности $\gamma$, $L$ — центр гомотетии $H$, переводящей окружность $\gamma$ в $\gamma_{0}$ (точка $K$ лежит на продолжении отрезка $К_{1}$ за точку $I$, причем отношение $LI/KI$ равно отношению радиусов окружностей $\gamma$ в $\gamma_{0}$).

Докажем, что отрезок $AA_{1}$, (рис. 2) проходит через точку $L$ (точно так же мы можем рассуждать и об отрезках $ВВ_{1}$ и $СС_{1}$).Гомотетию $H$ можно рассматривать как композицию двух гомотетий: первая из них $H_{1}$ с центром $A_{1}$ переводит у в окружность $\gamma_{A}$, касающуюся окружности $\gamma$ в точке $A_{1}$, вторая $H_{2}$ с центром $А$ переводит $\gamma_{A}$ в $\gamma_{0}$ при этом, конечно, $H = H_{2} \circ H_{1}$.Тот факт, что точка $L$ лежит на прямой (даже на отрезке) $AA_{1}$, вытекает из так называемой «теоремы о трех центрах подобия»: если $H_{1}$, и $H_{2}$ — две гомотетии с коэффициентами $k_{1}$ и $k_{2}$, $k_{1} k_{2} \neq 1$, то их композиция $H = H_{2} \circ H_{1}$, — тоже гомотетия с коэффициентом $k_{1} k_{2}$, причем центры всех трех гомотетий лежат на одной прямой.

Докажем это в интересующем нас случае, когда $0<k_{1}<1$ и $0<k_{2}<1$ (при этом центр гомотетии $H$ будет лежать на отрезке, соединяющем центры гомотетий $H_{1}$ и $H_{2}$).Возьмем три точки $P$, $Q$ и $X$, не лежащие на одной прямой (рис. 3). Пусть $P_{1}=H(P)$, $Q_{1}=H(Q)$, $X_{1}=H(X)$.Треугольник $P_{1}Q_{1}X_{1}$, подобен треугольнику $PQX$, причем их сходственные стороны либо параллельны, либо лежат на одной прямой. Отсюда следует, что найдутся две стороны (пусть для определенности это будут $PQ$ и $P_{1}Q_{1}$), лежащие на несовпадающих параллельных прямых.Прямые $PP_{1}$ и $QQ_{1}$ пересекаются в некоторой точке $O$ (поскольку $P_{1}Q_{1} = kPQ < PQ$), лежащей по ту же сторону от прямой $PQ$, что и точки $P_{1}$ и $Q_{1}$.

Теперь ясно, что точки $X$ и $X_{1}$ лежат на одной прямой, причем $OX_{1}/OX = k$, т. е. $H$ — гомотетия с центром $O$ и коэффициентом $k=k_{1}k_{2}$. Если $O_{1}$ — центр гомотетии $H_{1}$, а $O_{2}$ — центр гомотетии $H_{2}$, то $H(O)=H_{2}(O_{1})$ лежит на отрезке $O_{1}O_{2}(k_{2} < 1$); это значит, что прямая $O_{1}O_{2}$ проходит через точку $O$, причем точки$O_{1}$ и $O_{2}$ лежат по разные стороны от точки $O$ на прямой $O_{1}O_{2}$ ($0<k_{1}<1$ и $0<k_{2}<1$). Отсюда следует, что точка $О$ лежит на отрезке $O_{1}O_{2}$. Утверждение задачи тем самым доказано — все три отрезка $AA_{1}$, $BB_{1}$ и $CC_{1}$ проходят через точку $L$.

Н.Васильев

М1577. О высоте, медиане и биссектрисе треугольника

Задача из журнал «Квант» (1997)

Условие

В треугольнике отношение синуса одного угла к косинусу другого равно тангенсу третьего. Докажите, что высота, проведенная из вершины первого угла, медиана, проведенная из вершины второго, и биссектриса третьего угла пересекаются в одной точке.

Решение

M15772

Пусть [latex] \alpha , \beta , \gamma [/latex] — углы треугольника ABC, в котором AH — высота, BK — медиана, CL — биссектриса. Из  условия

[latex] \frac{\sin \alpha }{\cos \beta }=\tan \gamma [/latex]  (1)

следует, что углы ABC и ACB острые, поскольку  [latex] \sin\alpha [/latex] >0 и в треугольнике не может быть двух тупых углов. Следовательно, основание H высоты AH — внутренняя точка отрезка BC. Найдем отношения, в которых делят высоту AH (считая от основания) два других отрезка. Высота AH параллелограмма ABCD делится его диагональю BD в отношении:

[latex] \frac{BH}{AD}=\frac{BH}{BC}=\frac{c\cos \gamma }{a}=\frac{\sin\gamma \cos \beta }{\sin \alpha }[/latex].  (2)

Биссектриса же CL делит сторону НА треугольника НАС в отношении:

[latex] \frac{HC}{CA}=\cos\gamma [/latex].   (3)

Отношения (2) и (3) равны в том и только в том случае, когда, [latex]\sin\gamma\cos\beta =\cos\gamma\sin\alpha [/latex], что эквивалентно условию (1).

Таким образом, условие (1) эквивалентно тому, что AH, BK, CL пересекаются в одной точке.

Замечания.

  1. Для треугольника задачи [latex]\left | \angle BAC-\frac{\pi }{2} \right |< \frac{\pi }{2}-\angle BAH[/latex] тогда и только тогда, когда [latex]\angle BCA >\frac{\pi }{4}[/latex]. Это легко следует из (1).
  2. Из предыдущего замечания сразу следует, что если в остроугольном треугольнике ABC биссектриса CL, медиана ВК и высота АН пересекаются в одной точке, то [latex]\angle BCA>\frac{\pi }{4}[/latex].Это — задача IV Всесоюзной математической олимпиады (см. книгу Н Б Васильева и А А.Егорова «Задачи Всесоюзных математических олимпиад» ~ М .: Наука, 1988; задача 135). Нетрудно показать, что для любого угла ВАС треугольник задачи существует. Из этого следует, что для тупоугольного треугольника задачи неравенство [latex]\angle ACB\geq \frac{\pi }{4}[/latex] выполняется не всегда.
  3. Если в неостроугольном треугольнике ABC высота АН, медиана ВК и биссектриса CL пересекаются в одной точке, то [latex]\angle ACB>\angle ABC[/latex]. Это можно доказать геометрически, но проще — с помощью (1).

Л.Алътшулер, В.Сендерос