Симметрическая группа

Множество всех подстановок порядка [latex]n[/latex] с операцией умножения подстановок образуют группу [latex]S_n[/latex]. Единичным элементом группы является подстановка [latex]e=\begin{pmatrix}1&2&\cdots&n\\1&2&\cdots&n\end{pmatrix}[/latex], обратной подстановкой для [latex]\pi=\begin{pmatrix}i_1&i_2&\cdots&i_n\\j_1&j_2&\cdots&j_n\end{pmatrix}[/latex] является [latex]\pi^{-1}=\begin{pmatrix}j_1&j_2&\cdots&j_n\\i_1&i_2&\cdots&i_n\end{pmatrix}[/latex]. Порядок этой группы равен [latex]n![/latex].
Группа [latex]S_n[/latex] называется симметрической группой порядка [latex]n[/latex] .
При [latex]n>2[/latex] группа [latex]S_n[/latex] не коммутативна.

Пример

Группа [latex]S_3[/latex] состоит из шести элементов: [latex]e=\begin{pmatrix}1&2&3\\1&2&3\end{pmatrix},\begin{pmatrix}1&2&3\\1&3&2\end{pmatrix},\begin{pmatrix}1&2&3\\2&1&3\end{pmatrix},\begin{pmatrix}1&2&3\\2&3&1\end{pmatrix},\begin{pmatrix}1&2&3\\3&1&2\end{pmatrix},\begin{pmatrix}1&2&3\\3&2&1\end{pmatrix}.[/latex] Эта группа не коммутативна: произведение [latex]\begin{pmatrix}1&2&3\\1&2&3\end{pmatrix}\begin{pmatrix}1&2&3\\1&3&2\end{pmatrix}[/latex] равно [latex]\begin{pmatrix}1&2&3\\2&1&3\end{pmatrix}[/latex], что отлично от [latex]\begin{pmatrix}1&2&3\\1&3&2\end{pmatrix}\begin{pmatrix}1&2&3\\2&3&1\end{pmatrix}=\begin{pmatrix}1&2&3\\3&2&1\end{pmatrix}[/latex].

Задача

Доказать, что порядок группы [latex]S_n[/latex] равен [latex]n![/latex].

Спойлер

Найдём порядок [latex]|S_n|[/latex] группы [latex]S_n[/latex]. Символ 1 можно подходящей перестановкой [latex]\sigma[/latex] перевести в любой другой символ [latex]\sigma (1)[/latex], для чего существует в точности [latex]n[/latex] различных возможностей. Но, зафиксировав [latex]\sigma (1)[/latex], в качестве [latex]\sigma (2)[/latex] мы имеем право брать только один из оставшихся [latex]n-1[/latex] символов (всего различных пар [latex]\sigma (1),\sigma (2)[/latex] имеется [latex](n-1)+(n-1)+…+(n-1)=n(n-1)[/latex] ), в качестве [latex]\sigma (3)[/latex] — соответственно [latex]n-2[/latex] символов и т.д. Всего возможностей выбора [latex]\sigma (1),\sigma (2),…\sigma (n)[/latex], а стало быть, и различных перестановок будет [latex]n(n-1)…2\cdot 1=n![/latex].

[свернуть]

Источники

Структуры и подструктуры

Тест на тему «Простейшие задачи на определение структур группы, кольца, поля. Подструктуры.Циклическая группа. Симметрическая группа.». Прочтите все четыре статьи, прежде чем проходить тест.