8.2 Площадь в полярных координатах

$\DeclareMathOperator{\ctg}{ctg}\DeclareMathOperator{\tg}{tg} \DeclareMathOperator{\arctg}{arctg} \newcommand{\rndBrcts}[1]{\left ( #1 \right )} \newcommand{\abs}[1]{\left | #1 \right |}$

В полярных координатах положение точки на плоскости характеризуется полярным радиусом $r$ – расстоянием от точки до начала координат и углом $φ$, образованным радиус-вектором точки и положительным направлением оси $Ox$. Будем считать, что $−\pi< φ \leqslant \pi$. Рассмотрим на плоскости множество, ограниченное кривой, заданной уравнением $r=r(\varphi)$ $(\alpha \leqslant \varphi \leqslant \beta)$, и отрезками лучей $\varphi=\alpha$ и $\varphi=\beta$. Предположим, что функция $r(\varphi)$ непрерывна и положительна на $[\alpha ,\beta]$. Можно показать, что это множество квадрируемо. Разобьем отрезок $[\alpha, \beta]$ на части точками $\alpha =\varphi_{0} < \varphi_{1}< \dots < \varphi_{n}= \beta$. Тогда рассматриваемое множество разобьется на криволинейные секторы. Если исходное разбиение отрезка $[\alpha, \beta]$ достаточно мелкое, то, в силу непрерывности функции $r(\varphi),i$-й сектор можно приближенно считать сектором круга. Точнее, если обозначим $$\mu_{i} =\inf_{\varphi_{i} \leqslant \varphi_{i} \leqslant \varphi_{i+1}}r(φ) \;\;\;и\;\;\;Mi=\sup_{\varphi_{i} \leqslant \varphi \leq \varphi_{i+1}}r(φ),$$ то рассматриваемый криволинейный сектор содержит в себе круговой сектор радиуса $\mu_{i}$ и содержится в круговом секторе радиуса $M_{i}$. Площадь внутреннего сектора радиуса $\mu_{i}$ равна $\displaystyle \frac{1}{2}\mu_{i}^{2} \Delta \varphi_{i}$, а площадь внешнего – $\displaystyle \frac{1}{2}M_{i}^2 \Delta \varphi_{i}$, где $\Delta \varphi_{i}$ – угол при вершине. Складывая эти площади, получим $$\frac{1}{2} \sum_{i=0}^{n-1}\mu_{i}^2 \Delta \varphi_{i}\equiv \underline S,$$ $$\frac{1}{2} \sum_{i=0}^{n-1}M{i}^2 \Delta \varphi_{i}\equiv \overline S.$$

Как мы уже отметили, рассматриваемое множество квадрируемо, так что его площадь $S$ удовлетворяет неравенству $\underline S\leqslant S\leqslant \overline S.$ Но $\underline S$ и $\overline S$ представляют собой соответственно нижнюю и верхнюю суммы Дарбу для функции $\displaystyle \frac{1}{2}r^2(\varphi),$ соответствующие данному разбиению отрезка $[\alpha,\beta].$ Поэтому, учитывая, что функция $\displaystyle \frac{1}{2}r^2(\varphi)$ интегрируема по Риману на отрезке $[\alpha; \beta ],$ получаем, что при стремлении к нулю диаметра разбиения верхняя и нижняя суммы Дарбу обе стремятся к $\displaystyle \frac{1}{2} \int_\limits{ \alpha}^{ \beta}r^2( \varphi)d \varphi .$ Таким образом, мы доказали равенство
$$S=\frac{1}{2} \int_\limits{ \alpha}^{ \beta}r^2( \varphi)d \varphi .$$

Примеры решения задач

Данные примеры читателю рекомендуется решить самому в качестве тренировки.

  1. Спираль Архимеда задается уравнением $r=a \varphi$ $(0 \leqslant \varphi \leqslant 2 \pi),$ где параметр $a>0.$ Найдите площадь множества точек плоскости, ограниченной спиралью Архимеда.
    Решение

    Площадь множества точек плоскости, ограниченной спиралью Архимеда равна $$S=\frac{1}{2} \int\limits_{0}^{2 \pi}r^2(\varphi)d \varphi = \frac{1}{2} a^2 \int_\limits{0}^{2 \pi} \varphi^2 d \varphi = \frac{4 \pi^3 a^2}{3}$$

    Ответ: $\displaystyle S=\frac{4 \pi^3 a^2}{3}.$

  2. Вычислить площадь фигуры, ограниченной кардиоидой $r=1+ \cos \varphi$ $(0 \leqslant \varphi \leqslant 2 \pi)$
    Решение

    $$S=\frac{1}{2} \int_\limits{0}^{2 \pi}(1+ \cos \varphi)^2 d \varphi = $$
    $$=\frac{1}{2}\int_\limits{0}^{2\pi}\left ( 1+2\cos\varphi+\cos^2\varphi \right )d\varphi=$$
    $$=\frac{1}{2}\int_\limits{0}^{2\pi}\left ( 1+2\cos\varphi+\frac{1+\cos 2 \varphi}{2} \right )d \varphi=$$
    $$=\frac{1}{2}\int_\limits{0}^{2\pi}\left ( \frac{3}{2} + 2\cos\varphi+\frac{\cos2\varphi}{2} \right )d\varphi=$$
    $$=\frac{1}{2}\left ( \frac{3}{2}\varphi + 2\sin\varphi+\frac{\sin2\varphi}{4}\right )\bigg|_{0}^{2\pi}=\frac{3\pi}{2}$$

    Ответ: $\displaystyle S=\frac{3 \pi}{2}.$

  3. Вычислить площадь фигуры, ограниченной линией $r(\varphi)=2 \cos ^2 \varphi$
    Решение

    Так как, $r(\varphi)=2 \cos ^2 \varphi \geq 0$ $\forall \varphi ,$ значит угол принимает все значения от $\alpha = 0$ до $\beta = 2 \pi .$ По рабочей формуле:
    $$S=\frac{1}{2} \int_\limits{\alpha}^{\beta}r^2(\varphi)d \varphi=\frac{1}{2}\int_\limits{0}^{2\pi}(2 \cos^2 \varphi)^2 d \varphi=$$
    $$=\frac{1}{2}\cdot 4 \int_\limits{0}^{2\pi}(\cos^2 \varphi)^2 d \varphi =2\int_\limits{0}^{2\pi}\left ( \frac{1+\cos 2\varphi}{2} \right )^2 d \varphi=$$
    $$=2\cdot \frac{1}{4}\int\limits_{0}^{2\pi} (1+\cos 2\varphi)^2 d \varphi= \frac{1}{2}\int_\limits{0}^{2\pi}(1+2\cos 2\varphi+\cos^22\varphi)d \varphi=$$
    $$=\frac{1}{2}\int_\limits{0}^{2\pi} \left ( 1+2\cos2\varphi+\frac{1+\cos4\varphi}{2} \right )d \varphi=$$
    $$=\frac{1}{2}\int_\limits{0}^{2\pi}\left ( \frac{3}{2} + 2\cos2\varphi +\frac{\cos4\varphi}{2} \right )d \varphi=$$
    $$=\frac{1}{2}\left ( \frac{3}{2} \varphi+\sin2\varphi+ \frac{\sin4\varphi}{8} \right )\bigg|_{0}^{2\pi}=$$
    $$=\frac{1}{2}\left ( \frac{3}{2}\cdot 2\pi+\sin4\pi+\frac{\sin8\pi}{8}-\left ( \frac{3}{2}\cdot 0 +\sin 0 + \frac{\sin0}{8} \right ) \right )=$$
    $$=\frac{3\pi}{2}$$

    Ответ: $\displaystyle S=\frac{3\pi}{2}.$

  4. Вычислить площадь фигуры, ограниченной линиями, заданными в полярных координатах $r=\sqrt{3} \cos \varphi,$ $r=\sin \varphi$ $\displaystyle \left ( 0 \leqslant \varphi \leqslant \frac{\pi}{2} \right ).$
    Решение

    Фигура, ограниченная окружностями $r=\sqrt{3} \cos \varphi,$ $r=\sin \varphi ,$ не определена однозначно и поэтому в условии наложено дополнительное ограничение на угол $\displaystyle \left ( 0 \leqslant \varphi \leqslant \frac{\pi}{2} \right ),$ из которого следует, что необходимо вычислить заштрихованную площадь:

    Сначала найдем луч $\displaystyle \varphi=\frac{\pi}{3},$ по которому пересекаются окружности. Приравниваем функции и решаем уравнение:
    $$\sin \varphi=\sqrt{3} \cos \varphi$$
    $$\frac{\sin \varphi}{\cos \varphi} = \sqrt{3}$$
    $$\tg \varphi = \sqrt{3}$$

    Таким образом: $\displaystyle \varphi=\arctg\sqrt{3}=\frac{\pi}{3}$

    Из чертежа следует, что площадь фигуры нужно искать как сумму площадей:

    • На промежутке $\displaystyle \left [0;\frac{\pi}{3}\right ]$ фигура ограничена отрезком луча $\displaystyle \varphi=\frac{\pi}{3}$ и дугой окружности $r=\sin\varphi .$
      $$S_{1}=\frac{1}{2}\int_\limits{0}^{\frac{\pi}{3}}(\sin\varphi)^2d \varphi=\frac{1}{2}\int_\limits{0}^{\frac{\pi}{3}}\sin^2 \varphi d \varphi=$$
      $$=\frac{1}{2}\cdot \frac{1}{2}\int_\limits{0}^{\frac{\pi}{3}}(1-\cos2\varphi)d \varphi=\frac{1}{4}\left ( \varphi-\frac{1}{2}\sin2\varphi \right )\bigg|_{0}^{\frac{\pi}{3}}=$$
      $$=\frac{1}{4}\left ( \frac{\pi}{3}-\frac{1}{2}\sin\frac{2\pi}{3} \right )=\frac{1}{4}\left ( \frac{\pi}{3}-\frac{1}{2}\cdot \frac{\sqrt{3}}{2} \right )=\frac{\pi}{12}-\frac{\sqrt{3}}{16}$$
    • На промежутке $\displaystyle \left [ -\frac{\pi}{3};\frac{\pi}{3}\right ]$ фигура ограничена тем же отрезком луча $\displaystyle \varphi=\frac{\pi}{3}$ и дугой окружности $r=\sqrt{3}\cos\varphi .$
      $$S_{2}=\frac{1}{2}\int_\limits{\frac{\pi}{3}}^{\frac{\pi}{2}}(\sqrt{3}\cos\varphi)^2d \varphi = \frac{3}{2} \int_\limits{\frac{\pi}{3}}^{\frac{\pi}{2}}\cos^2\varphi d \varphi=$$
      $$=\frac{3}{2}\cdot \frac{1}{2}\int_\limits{\frac{\pi}{3}}^{\frac{\pi}{2}}(1+\cos2\varphi)d \varphi= \frac{3}{4}\left ( \varphi + \frac{1}{2} \sin 2\varphi \right )\bigg|_{\frac{\pi}{3}}^{\frac{\pi}{2}}=$$
      $$=\frac{3}{4}\left ( \frac{\pi}{2}+\frac{1}{2}\sin\pi-\left ( \frac{\pi}{3}+\frac{1}{2}\sin\frac{2\pi}{3} \right ) \right )=$$
      $$=\frac{3}{4}\left ( \frac{\pi}{2}+0-\frac{\pi}{3}-\frac{1}{2}\cdot\frac{\sqrt{3}}{2} \right )=\frac{3}{4}\left ( \frac{\pi}{6}-\frac{\sqrt{3}}{4} \right )=\frac{3\pi}{24}-\frac{3\sqrt{3}}{16}$$
    • Пользуемся аддитивностью площади:
      $$S=S_{1}+S_{2}=\frac{\pi}{12}-\frac{\sqrt{3}}{16}+\frac{3\pi}{24}-\frac{3\sqrt{3}}{16}=$$
      $$=\frac{5\pi}{24}-\frac{\sqrt{3}}{4}=\frac{5\pi-6\sqrt{3}}{24}$$

    Ответ: $\displaystyle S=\frac{5\pi-6\sqrt{3}}{24}.$

Площадь в полярных координатах

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме «Площадь в полярных координатах».

См. также:

Использование полярных, цилиндрических и сферических координат для вычисления кратных интегралов

При вычислении кратных интегралов часто возникает необходимость перейти к более простой области интегрирования для упрощения их вычисления, возможно даже ценой некоторого усложнения подынтегральной функции.

Использование полярных координат

Из курса аналитической геометрии известны следующие соотношения между декартовыми и полярными координатами: $x = r\cos\phi,\quad y = r\sin\phi\quad(*)$.
При этом, $r \geq 0, 0 \leq \phi <2\pi$. Рассмотрим вспомогательную плоскость $RO\Phi$, где $r$ и $\phi$ являются декартовыми координатами, и определим на ней множество точек $G$, такое, что: $G = \{(r, \phi)| r > 0, 0 \leq \phi < 2\pi\}$.

Тогда формулы $(*)$ определяют непрерывно дифференцируемое отображение $F : G \to \widetilde{XOY}$, где $\widetilde{XOY} = XOY \setminus\{(0, 0)\}$.

По определению полярных координат, в декартовой системе координат $XOY$ $r$ задает радиус окружности с центром в начале координат, а $\phi$ определяет луч, исходящий из центра координат, такой что угол между лучом и положительным направлением оси $OX$ равен $\phi$. С геометрической точки зрения очевидно, что они пересекаются в единственной точке.

Таким образом, любую точку $P = (x_0, y_0)$ из $\widetilde{XOY}$ можно однозначно определить пересечением луча, направленного под углом $\phi_0$ и окружности радиусом $r_0$, и тогда точка $P’ = (r_0, \phi_0)$ будет единственным прообразом $P$ в $G$. Очевидно, что любой элемент из $G$ служит прообразом, и что двум различным точкам из $G$ будут соответствовать 2 различные точки из $\widetilde{XOY}$. Таким образом, отображение $F$ между точками плоскостей $G$ и $\widetilde{XOY}$ взаимно однозначное:

kursach

Якобиан полученного отображения будет равен:
$J_F = \begin{array}{|cc|} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \phi} \end{array} = \begin{array}{|cc|} \cos{\phi}& -r\sin{\phi} \\ \sin{\phi} & r\cos{\phi} \end{array} = r$

Теперь рассмотрим множество точек $G’$, полученное добавлением к множеству $G$ отрезка $r = 0$, т.е. $G’ = \{(r, \phi)| r \geq 0, 0 \leq \phi < 2\pi\}.$ $G’$ уже является прообразом всей плоскости $XOY$, но на отрезке $r = 0, 0 \leq \phi < 2\pi$ не достигается взаимная однозначность, а $\left|J_F\right| = 0$. Обратим внимание, что его Жорданова мера равна нулю.

Наконец, пусть дана область $\Omega \subset XOY$ и функция $f$, непрерывная на измеримом множестве $\overline{\Omega}$. Ее прообразом при отображении $F$, заданного формулами $(*)$, будет некоторая область $\Omega’ \subset G’$. Если область $\Omega$ не содержит точки O — начала координат, то выполнены все условия теоремы о замене переменной в кратных интегралах, и справедлива формула:
$$\iint\limits_{\Omega} f(x, y)\,dxdy = \iint\limits_{\Omega’} f(r\cos{\phi}, r\sin{\phi})r\,drd\phi$$
Если же точка $O \in \Omega$, то взаимная однозначность и не обращение якобиана в нуль не выполняются на множестве $r = 0$, что не влияет на справедливость данной формулы (следует из замечания к указанной теореме).

Пример №1

Вычислить интеграл:
$\iint\limits_{\Omega}(x^2 + y^2)\,dxdy, \Omega = \{(x, y)| y \geq 0, x^2 + y^2 \leq a^2\}.$
Заметим, что в полярных координатах полукруг [latex]\Omega[/latex] будет представлять из себя более простую область интегрирования:

example

Поэтому, воспользуемся формулой замены переменной и перейдем к полярным координатам:
$\iint\limits_{\Omega}(x^2 + y^2)\,dxdy = \iint\limits_{\Omega’}r^2r\,drd\phi = \int\limits_0\limits^{\pi}\,d\phi\int\limits_0\limits^ar^3\,dr = $ $ \int\limits_0\limits^{\pi}\frac{a^4}{4}\,d\phi = \frac{\phi a^4}{4}|_0^{\pi} = \frac{\pi a^4}{4}$.

[свернуть]

Использование цилиндрических и сферических координат

Рассмотрим теперь пространство $\mathbb{R}^3$, в котором задана декартова система координат $OXYZ$. Цилиндрические координаты связанны с декартовыми следующим образом:
$x = r\cos\phi,\quad y = r\sin\phi,\quad z = t\quad(**),$
где $r \geq 0, 0 \leq \phi <2\pi, t \in \mathbb{R}$ (величины $r$ и $\phi$ для любой точки $A = (x, y, z)$ определяются таким же образом, как и в полярных координатах для ее проекции $P’ = (x, y, 0)$ на $XOY$). Теперь, аналогично случаю с полярными координатами, рассмотрим вспомогательное пространство $OR\Phi T$, где $r, \phi, t$ — декартовы координаты, а в нем — множество точек $G = \{(r, \phi, t)| r \geq 0, 0 \leq \phi <2\pi, t \in \mathbb{R}\}$.

Отображение $F : G \to OXYZ$, определяемое формулами $(**)$, является непрерывно дифференцируемым.
$J_F = \begin{array}{|ccc|} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \phi} & \frac{\partial x}{\partial t} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \phi} & \frac{\partial y}{\partial t} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \phi} & \frac{\partial z}{\partial t} \end{array} = \begin{array}{|ccc|} \cos{\phi}& -r\sin{\phi} & 0 \,\\ \sin{\phi} & r\cos{\phi} & 0 \,\\ 0 & 0 & 1\,\end{array} = r$

Очевидно, что как и в случае с полярными координатами, отображение $F$ — взаимно однозначное, и его якобиан не равен нулю. Данные условия не выполняются только при $r = 0$, т.е. на множестве $L = \{(r, \phi, t)| r = 0, 0 \leq \phi <2\pi, t \in \mathbb{R}\}$. Пересечение такого множества с любым другим ограниченным множеством есть ограниченное линейное множество, и жорданова мера этого пересечения равна нулю.

Тогда, если дана область $\Omega \subset OXYZ$, и функция $f$ непрерывна на измеримом множестве $\overline{\Omega}$, а $\Omega’ \subset G$ — прообраз данной области при отображении $F$, то выполнены все условия теоремы о замене, и справедлива следующая формула:
$$\iiint\limits_{\Omega} f(x, y, z)\,dxdydz = \iiint\limits_{\Omega’} f(r\cos{\phi}, r\sin{\phi}, t)r\,drd\phi dt$$

Наконец, рассмотрим сферические координаты, связанные с декартовыми следующими соотношениями: $x = r\cos{\phi} \cos{\psi},\quad y = r\sin{\phi} \cos{\psi},\quad z = r\sin{\psi}\quad (***),$
где $r \geq 0, 0 \leq \phi < 2\pi, -\frac{\pi}{2} \leq \psi \leq \frac{\pi}{2}$. Введем вспомогательное пространство $OR\Phi\Psi$, где $r, \phi, \psi$ — декартовы координаты, а в нем рассмотрим множество точек $G = \{(r, \phi, \psi)| r \geq 0, 0 \leq \phi < 2\pi -\frac{\pi}{2} \leq \psi \leq \frac{\pi}{2}\}$.

Отображение $F : G \to OXYZ$, определяемое формулами $(***)$, непрерывно дифференцируемо.
$J_F = \begin{array}{|ccc|} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \phi} & \frac{\partial x}{\partial \psi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \phi} & \frac{\partial y}{\partial \psi} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \phi} & \frac{\partial z}{\partial \psi} \end{array} = \begin{array}{|ccc|} \cos{\phi}\cos{\psi}& -r\sin{\phi}\cos{\psi} & -r\cos{\phi}\sin{\psi} \,\\ \sin{\phi}\cos{\psi} & r\cos{\phi}\cos{\psi} & -r\sin{\phi}\sin{\psi} \,\\ \sin{\psi} & 0 & r\cos{\psi}\,\end{array} = $ $ r^2\cos{\psi}$.

Взаимная однозначность данного отображения устанавливается по тем же рассуждениям, что и в предыдущих двух случаях, и не выполняется только при $r = 0, \psi = -\frac{\pi}{2}, \psi = \frac{\pi}{2}$, когда и якобиан равен нулю. Однако любое подмножество множества, задаваемого такими равенствами, будет представлять собой ограниченную часть плоскости с жордановой мерой нуль в пространстве $OXYZ$, что не помешает совершить замену.

Тогда, при соответствующих условиях, справедлива формула замены переменной ($\Omega \subset OXYZ, \Omega’ \subset G$):
$$\iiint\limits_{\Omega} f(x, y, z)\,dxdydz = $$ $$\iiint\limits_{\Omega’} f(r\cos{\phi}\cos{\psi}, r\sin{\phi}\cos{\psi}, r\sin{\psi})r^2\cos{\psi}\,drd\phi d\psi$$

Пример №2

Вычислить интеграл $\iiint\limits_{\Omega} e^{{(x^2 + y^2 + z^2)}^{\frac{3}{2}}}\,dxdydz$, где граница области $\Omega$ задается уравнением $x^2 + y^2 + z^2 = 1$.

Область интегрирования представляет собой шар радиуса [latex]1[/latex] с центром в начале координат. Следовательно, будет удобно воспользоваться переходом к цилиндрической системе координат. В ней новая область интегрирования [latex]\Omega'[/latex] будет определятся следующими неравенствами: $0 \leq \phi \leq 2\pi,\quad -\frac{\pi}{2} \leq \psi \leq \frac{\pi}{2},\quad 0 \leq r \leq 1$. Воспользуемся формулой замены переменной для сферических координат:
$\iiint\limits_\Omega e^{(x^2 + y^2 + z^2)^{\frac{3}{2}}}\,dxdydz = $ $\iiint\limits_{\Omega’} e^{r^{2^{\frac{3}{2}}}}r^2\cos{\psi} \,drd\phi d\psi = \int\limits_0\limits^{2\pi}\,d\phi\int\limits_0\limits^1e^{r^3}r^2\,dr\int\limits_{-\frac{\pi}{2}}\limits^{\frac{\pi}{2}}\cos{\psi}\,d\psi = $ $\int\limits_0\limits^{2\pi}\,d\phi\int\limits_0\limits^1e^{r^3}r^2\,dr \cdot (\sin{\psi})|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = 2\int\limits_0\limits^{2\pi}\,d\phi\int\limits_0\limits^1\frac{1}{3}e^{r^3}\,d(r^3) = $ $\frac{2}{3}\int\limits_0\limits^{2\pi}\,d\phi \cdot e^{r^3}|_0^1 = \frac{2}{3}(e — 1)\int\limits_0\limits^{2\pi}\,d\phi = \frac{2}{3}(e — 1) \cdot \phi|_0^{2\pi} = \frac{4\pi}{3}(e — 1)$

[свернуть]

Тест: Использование полярных, цилиндрических и сферических координат для вычисления кратных интегралов

Для закрепления материала, рекомендуется пройти тест по данной теме.


Таблица лучших: Переход к полярным, цилиндрическим и сферическим координатам при вычислении кратных интегралов

максимум из 7 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Вычисления площадей плоских областей, ограниченных кривыми, заданными параметрически и в полярных координатах

Параметрическое задание

Пусть границами криволинейной трапеции являются прямые [latex]x=a, x=b[/latex], ось абсцисс и параметрически заданная кривая

[latex] \left\{\begin{matrix} y=\varphi (t); \\ x=\psi (t); \end{matrix} \right. [/latex]

Причем: функции [latex]x[/latex] и  [latex]y[/latex] непрерывны на интервале [latex][a,b][/latex], [latex]a<b[/latex]; [latex]x=\varphi (t)[/latex] монотонно возрастает на этом интервале и [latex]\varphi (\alpha )=a, \psi (\beta )=b[/latex].

Тогда площадь криволинейной трапеции находится по формуле [latex] S(G)=\int\limits_\alpha ^\beta \psi (t)*\varphi ‘(t)dt [/latex]

Эта формула получается из формулы площади криволинейной трапеции $latex S(G)=\int\limits_\alpha ^\beta \psi (t)*\varphi ‘(t)dt $ подстановкой: $latex S(G)=\int\limits_\alpha^\beta \psi (t)*\varphi ‘(t)dt $

Если функция является монотонно убывающей на интервале [latex][\beta ,\alpha], \beta < \alpha[/latex], то формула примет следующий вид: [latex] S(G)=-\int\limits_{\beta }^{\alpha }\psi (t)*\varphi ‘(t)dt [/latex]

Что делать, если нам дана не криволинейная трапеция? Свести данную фигуру к ней. Поделить её на части (прямыми, параллельными абсциссе и ординате), площадь которых уже можно будет посчитать описанным выше способом.

Примеры:

Спойлер

Дан эллипс [latex]\left\{\begin{matrix} x=2\cos t\\y=3\sin t \end{matrix}\right.[/latex]. Посчитать его площадь.

Делим эллипс абсциссой и ординатой на 4 симметричные части.

Image1

Очевидно, их площади равны — а площадь эллипса получается равной площади верхней правой четверти, умноженной на 4.

Считаем её. Она равна
[latex]-\int\limits_{0}^{\frac{\pi }{2}}3\sin t*(2\cos )’ dt=[/latex][latex]6\int\limits_{0}^{\frac{\pi }{2}}\sin ^{2}t dt=[/latex][latex]3\int\limits_{0}^{\frac{\pi }{2}}(1-\cos 2t)dt=[/latex][latex]\frac{3\pi }{2}[/latex]

Умножаем площадь одной четверти на 4, и:

Ответ — [latex]6\pi [/latex]

[свернуть]

Спойлер

Дана линия,заданная функциями [latex]x=2t-t^2[/latex] и [latex]y=2t^2-t^3. [/latex]
Найти площадь ограниченной ею и осью ОХ фигуры.
Находим производную [latex]y'[/latex], она равна [latex](2t^2-t^3)’=4t-3t^3[/latex].
Находим [latex]t[/latex], при которых наша линия пересекается с осью [latex]OX[/latex]. Это [latex]t=0[/latex] и [latex]t=2[/latex]. Составляем формулу площади:

[latex]S=\int\limits_{0}^{2}(2t-t^2)(4t-3t^2)dt[/latex];

[latex]S=\int\limits_{0}^{2}(3t^4-10t^3+8t^2)dt[/latex];

[latex]S=\frac{3t^5}{5}-\frac{5t^4}{2}+\frac{8t^3}{3}|^2_0[/latex];

[latex]S=\frac{8}{15}[/latex];
Ответ — [latex]\frac{8}{15}[/latex].

[свернуть]

Полярное задание

А что, если функции, ограничивающие нашу область, заданы полярно?
Есть простая формула: $$ S=\frac{1}{2} \int\limits_{\alpha }^{\beta }r^{2}d\varphi $$ Здесь [latex]\alpha [/latex] и [latex]\beta [/latex] — значения углов, ограничивающих фигуру, [latex]r[/latex] — расстояние от начала координат до точки, [latex]\varphi [/latex] — угол. Уравнение функции в полярных координатах — [latex]r=f(\varphi )[/latex]

Помните: в полярных координатах тоже стоит делить область на простые части.

Пример:

Спойлер

Найдём площадь круга. Задан уравнением [latex]r=a[/latex].

Площадь круга в первом квадранте — $$ S=\frac{1}{2} \int\limits_{0 }^{\frac{\pi }{2} }a^{2}d\varphi $$

Преобразуем этот интеграл:

[latex]S=\frac{1}{2}*\frac{\pi }{2}*a^{2}=\frac{\pi a^{2}}{4}[/latex].

Площадь всего круга — учетверённая площадь одной четверти, которую мы и подсчитали выше.

Тут должна быть картинка

[latex]S= \pi a^{2}[/latex]

[свернуть]

Источники:

Тест

Вычисления площадей плоских областей, заданных параметрически и в полярных координатах

В этом тесте предоставлены упражнения по пройденной теме. Если внимательно изучили материал, следовали всем данным ссылкам и рекомендациям,то вам не составит труда выполнить эти задания.

Таблица лучших: Вычисления площадей плоских областей, заданных параметрически и в полярных координатах

максимум из 14 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных