Основная теорема арифметики

Теорема. Любое натуральное число больше единицы может быть разложено в виде простых множителей и это разложение единственно (если не учитывать порядок множителей).

Докажем существование такого разложения и то, что оно единственно.

Существование. Пусть $n \in N, n > 1$ и мы имеем два варианта.Если $n$ простое, и тогда разложение уже получено, либо $n$ составное, а значит может быть представлено в виде $n=p_{0}a_{0}$, где $p_0$ — наименьший делитель $n$. Допустим $a_{0}>1$, а значит у нас снова два варианта. Либо $a_{0}$ — простое, либо оно составное и может быть представлено как $a_{0}=p_{1}a_{1}$, где $p_1$ — наименьший делитель $a_{0}$. Таким образом мы дойдем до $a_{m-1}=p_{m}a_{m}$, где $a_{m}=1$. Тогда $n=p_{0}p_{1}p_{2}\ldots p_{m}$, где $p_{i}, i=\overline{0, m}$ является простым по лемме (1) о простоте наименьшего делителя.

Единственность. Пусть существуют два разложения числа $n\in N, n > 1$ на простые множители. Тогда $p_{1}p_{2}\ldots p_{n}=q_{1}q_{2}\ldots q_{m}$. Так как $p_{1}p_{2}\ldots p_{n}$ разложение $n$, а значит является его делителем, то $p_{1} \mid q_{1}q_{2}\ldots q_{m}$. Если точнее, оно делит $q_{j}, j= \overline{1, m}$.Но так как $q_{j}$ и $p_{1}$ — простые, то это возможно только в том случае, если $p_{1}=q_{i}$. Так как порядок множителей не имеет значения, пусть это будет $q_{1}$. И тогда мы можем сократить равенство на $p_{1}$ и получим $p_{2}\ldots p_{n}=q_{2}\ldots q_{m}$. Повторяя рассуждения, мы придем к тому, что кончатся множители одного разложения (предположим что $n < m$) и мы получим такое равенство $1= q_{n}q_{n+1} \ldots q_{m}$. Однако, так как все множители — простые, а значит (по определению простого числа) найдено противоречие. Это доказывает единственность.

Так как в разложении целого числа могут оказаться одинаковые множители, то можно обозначить количество вхождений множителя его степенью : $$n=p^{a_{1}}_{1}p^{a_{2}}_{2}\ldots p^{a_{n}}_{n}, $$ где $p_{i} \neq p_{j}$ при $i, j = \overline{1, n}, i \neq j$. Это называется каноническим разложением числа.

Примеры
  1. Каноническим разложением числа $100$ будет $2^{2} \cdot 5^{2}$.
  2. Каноническим разложением числа $255$ будет $3^{1} \cdot 5^{1} \cdot 17^{1}$.
  3. Каноническим разложением числа $53$ будет $53^{1}$.

Тест на канонические разложения

Тест для проверки понимания изложенной выше темы.

Литература

  1. Электронный конспект по алгебре. Автор Белозеров.Г.С.
  2. И.М.Виноградов. Основы теории чисел. 6-ое издание, 1952 год. стр.20-22.
  3. Д.К.Фадеев. Лекции по алгебре. 1984 год. стр. 14-15.

Коэффициенты Тейлора, ряд Тейлора

Определение

Если функция $f$ определена в некоторой окрестности точки $x_{0}$ и является бесконечно дифференцируемой (имеет в данной точке производные всех порядков), то степенной ряд вида $$\sum\limits_{n=0}^{\infty}a_{n}\left(x-x_{0}\right)^n$$ называется рядом Тейлора функции $f$ в окрестности точки $x_{0}$, где числа $$a_{n}=\frac{{f}^{\left(n \right)}\left(x_{0} \right)}{n!} \;\;\; \left(n=0,1,2,\ldots \right)$$ это коэффициенты Тейлора функции $f$ в окрестности точки $x_{0}$.

Спойлер

Представим в виде ряда Тейлора функцию $$f\left(x \right)=\begin{cases}&e^{\frac{-1}{x^{2}}},\;\;x\neq0\\&0,\;\;x=0\end{cases}$$

Найдем производные функции вне нуля: $${f}^{\left(1\right)}\left(x \right)=e^{\frac{-1}{x^{2}}}\cdot \frac{2}{x^{3}},$$ $${f}^{\left(2\right)}\left(x \right)=\left(\frac{4}{x^{6}}-\frac{6}{x^{4}} \right)e^{\frac{-1}{x^{2}}},$$ $$\ldots$$ $${f}^{\left(k\right)}\left(x\right)=e^{\frac{-1}{x^{2}}}Q_{3k}\left(\frac{1}{x}\right).$$

Рассмотрим производные функции в нуле. Докажем по индукции, что $${f}^{\left(k\right)}\left(0 \right)=0 \;\;\; \forall k \in N.$$ Имеем,

  1. ${f}^{\left(1\right)}\left(0 \right)=\lim\limits_{ n \to 0}\frac{e^{\frac{-1}{x^{2}}}}{x}=0.$
  2. ${f}^{\left(n\right)}\left(0 \right)=0 \;\;\; \forall n \in N.$
  3. ${f}^{\left(n+1\right)}\left(0 \right)=$$\lim\limits_{ n \to 0}\frac{{f}^{n}\left(x \right)-{f}^{n}\left(0 \right)}{x}=$$\lim\limits_{ n \to 0}\frac{1}{x}e^{\frac{-1}{x^{2}}}Q_{3k}\left(\frac{1}{x} \right)=$$0.$

Следовательно, для данной функции коэффициенты формулы Тейлора в точке $x_{0}$ равны нулю. Но, с другой стороны, $f\left(x \right)=e^{\frac{-1}{x^{2}}}\neq0,\;\;\; x\neq0$. Таким образом, функция не представима в виде своего ряда Тейлора.

[свернуть]

Сходимость ряда Тейлора к функции

Пусть функция $f\left(x\right)$ бесконечно дифференцируема в точке $x_{0}$. Поставим ей в соответствие формулу Тейлора: $$f\left(x\right)=\sum\limits_{n=0}^{n}\frac{{f}^{\left(n\right)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+r_{n}\left(x\right),$$ где $r_{n}\left(x \right)$ — остаток в формуле Тейлора. Обозначим, $$S_{n}\left(x\right)=\sum\limits_{n=0}^{n}\frac{{f}^{\left(n \right)}\left(x_{0} \right)}{n!}\left(x-x_{0}\right)^{n},$$ где $S_{n}\left(x\right)$— частичная сумма данного ряда Тейлора данной функции. Следовательно, можем записать равенство: $$f\left(x \right)=S_{n}\left(x \right)+r_{n}\left(x \right).$$ Тогда для того, чтобы $\lim\limits_{ n \to \infty}s_{n}\left(x \right)=f\left(x\right)$, функция $f\left(x\right)$ на заданном интервале должна быть равной сумме своего ряда Тейлора.

Таким образом, для сходимости ряда Тейлора функции $f\left(x\right)$ к функции $f\left(x\right)$ на некотором интервале необходимо и достаточно , чтобы для всех $x$ из этого интервала ее остаточный член в формуле Тейлора стремился к нулю: $$\lim\limits_{ n \to \infty}r_{n}\left(x \right)=0. $$

Литература

Коэффициенты Тейлора

Предлагаю пройти Вам данный тест на закрепление материала по данной статье.


Таблица лучших: Коэффициенты Тейлора

максимум из 3 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Формула Тейлора с остатком в форме Пеано

Формулировка:

Если существует $ f^{(n)}(x_{0}) $, то $ f(x) $ представима в следующем виде:

$$ f(x)=\sum\limits_{k=0}^{n}\frac{f^{(k)}}{k!}(x-x_{0})^{k}+o((x-x_{0})^{n})_{x\to x_{0}} $$

Это выражение $ f(x) $ называется формулой Тейлора с остаточным членом в форме Пеано (или локальной формулой Тейлора)

Доказательство:

Для начала докажем Лемму

Пусть функции $ \varphi(x),\psi(x) $ определены в  $ \delta $  окрестности точки $ x_{0} $ и удовлетворяют следующим условиям:

  1. $ \forall x \in U_{\delta} \exists \varphi^{(n+1)}(x),\psi^{(n+1)}(x); $
  2. $ \varphi(x_{0})=\varphi'(x_{0})=…=\varphi^{(n)}(x_{0})=0 $, $ \psi(x_{0})=\psi'(x_{0})=…=\psi^{(n)}(x_{0})=0 $
  3. $ \psi(x)\neq0,\psi^{k}(x)\neq 0 \forall x\in U_{\delta}(x_{0}),k=\overline{1,n+1} $

Тогда $ \forall x\in U_{\delta}(x_{0}) $ существует точка $ \xi $, принадлежащая интервалу с концами $ x_{0} $ и $ x $ такая, что $ \frac{\varphi(x)}{\psi(x)}=\frac{\varphi^{n+1}(\xi)}{\psi^{n+1}(\xi)} $

Доказательство 

Пусть, например, $ x \in (x_{0},x_{0}+\delta) $. Тогда применяя к функциям $ \varphi $ и $ \psi $ на отрезке $ [x_{0},x] $ теорему Коши и учитывая, что $ \varphi(x)=\psi(x)=0 $ по условию, получаем

$$ \frac{\varphi(x)}{\psi(x)}=\frac{\varphi(x)-\varphi(x_{0})}{\psi(x)-\psi(x_{0})}=\frac{\varphi'(\xi_{1})}{\psi'(\xi_{1})}$, $ x_{0}<\xi_{1}<x $$

Аналогично, применяя к функциям $ \varphi’ $ и $ \psi’ $ на отрезке $ [x_{0},\xi_{1}] $ теорему Коши, находим

$$ \frac{\varphi'(\xi_{1})}{\psi'(\xi_{1})}=\frac{\varphi'(\xi_{1})-\varphi'(x_{0})}{\psi'(\xi_{1})-\psi'(x_{0})}=\frac{\varphi»(\xi_{2})}{\psi»(\xi_{2})},$$ $$ x_{0}<\xi_{2}<\xi_{1} $$

Из этих двух равенств следует, что

$$ \frac{\varphi(x)}{\psi(x)}=\frac{\varphi'(\xi_{1})}{\psi'(\xi_{1})}=\frac{\varphi»(\xi_{2})}{\psi»(\xi_{2})},$$ $$ x_{0}<\xi_{2}<\xi_{1}<x<x_{0}+\delta $$

Применяя теорему Коши последовательно к функциям $ \varphi» $ и $ \psi» $,$ \varphi^{(3)} $ и $ \psi^{(3)} $,…,$ \varphi^{(n)} $ и $ \psi^{(n)}$ на соответствующих отрезках получаем

$$ \frac{\varphi(x)}{\psi(x)}=\frac{\varphi'(\xi_{1})}{\psi'(\xi_{1})}=…=\frac{\varphi^{n}(\xi_{n})}{\psi^{n}(\xi_{n})}=\frac{\varphi^{n+1}(\xi)}{\psi^{n+1}(\xi)} $$

где $ x_{0}<\xi<\xi_{n}<…<\xi_{2}<\xi_{1}<x<x_{0}+\delta $

Равенство доказано для случая, когда $ x \in(x_{0},x_0+\delta) $, аналогично рассматривается случай, когда $ x \in(x_0-\delta,x_{0}) $.

Теперь, когда лемма доказана, приступим к доказательству самой теоремы:

Из существования $ f^{(n)}(x_{0}) $ следует, что функция $ f(x_{0}) $ определена и имеет производные до $ (n-1) $ порядка включительно в $ \delta $ окрестности точки  $ x_{0} $

Обозначим $ \varphi(x)=r_{n}(x),\psi(x)=(x-x_{0})^{n} $, где  $ r_{n}(x)=f(x)-P_{n}(x) $.

Функции $ \varphi(x) $ и $ \psi(x) $ удовлетворяют условиям леммы, если заменить номер $ n+1 $ на $ n-1 $

Используя ранее доказанную лемму и учитывая, что $ r_{n}^{(n-1)}(x_{0})=0 $ получаем

$$ \frac{r_{n}(x)}{(x-x_{0})^{n}}=\frac{r_{n}^{n-1}(\xi)-r_{n}^{(n-1)}(x_{0})}{n!(\xi-x_{0})}, $$ $$ \xi=\xi(x)(*) $$

где $ x_{0}<\xi<x<x_{0}<x_{0}+\delta $ или $ x_{0}-\delta<x<\xi<x_{0} $.

Пусть $ x\to x_{0} $, тогда из неравенств следует, что $ \xi \to x_{0} $, и в силу существования $ f^{(n)}(x_{0}) $ существует

$$ \lim\limits_{x\to x_{0}}\frac{r_{n}^{(n-1)}(x)-r_{n}^{(n-1)}(x_{0)}}{x-x_0}= $$

$$ =\lim\limits_{x\to x_{0}}\frac{r_{n}^{(n-1)}(\xi)-r_{n}^{(n-1)}(x_{0)}}{\xi-x_{0}}=r_{n}^{(n)}(x_{0})=0 $$

Так как выполняются равенства $ r_{n}(x_{0})=r_{n}'(x_{0})=…=r_{n}^{(n)}(x_{0})=0 $

Таким образом, правая часть формулы $ (*) $ имеет при $ x\to x_{0} $ предел, равный нулю, а поэтому существует предел левой части этой формулы, так же равный нулю. Это означает, что $ r_{n}(x)=o((x-x_{0})^{n}),x\to x_{0} $, то есть $ f(x)-P_{n}(x)=o((x-x_{0})^{n}) $, что и требовалось доказать.

Пример:

Разложить функцию $ y=\cos^{2}(x) $ в окрестности точки $ x_{0}=0 $  по Тейлору с остатком в форме Пеано.

Решение

Табличное разложение косинуса имеет следующий вид:

$$ \cos(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-…+(-1)^{n}\frac{x^{2n}}{(2n)!}+o(x^{2n+1}) $$

Представим функцию $ \cos^{2}(x) $ в виде:

$$ \cos^{2}(x)=\frac{1+\cos(2x)}{2}=\frac{1}{2}+\frac{1}{2}\cos(2x) $$

Заменим в табличном разложении $ x $ на $ 2x $ и подставим представление косинуса.Получим

$$ \cos^{2}(x)=1-x^2+\frac{x^{4}}{3}-…+(-1)^{n} \frac{2^{2n-1}x^{2n}}{2n!}+o(x^{2n+1})$$

Источники:

  1. Конспект по курсу математического анализа Лысенко З.М.
  2. Тер-Крикоровв А.М., Шабунин М.И. Курс математического анализа -М.:ФИЗМАТ-ЛИТ, 2001.-672 с. гл. IV §18 с. 161.

Тест на знание формулы Тейлора(ост.Пеано)

Проверьте себя на знание доказательства и применения формулы Тейлора с остатком в форме Пеано.