Базис и размерность линейного пространства, свойства

Определение 1. Базисом конечномерного пространства называется такая линейно независимая система (далее ЛНЗ) векторов этого пространства, через которую линейно выражается каждый вектор этого пространства.

Базис имеет огромное значение при изучении конечномерных линейных пространств, и часто используется в различных исследованиях. Он позволяет очень легко описать строение любого линейного пространства, заданного над произвольным полем.

Любой вектор $x$ из линейного пространства $X$ может быть представлен в виде линейной комбинации $$x =\alpha_{1} e_{1}+\alpha_{2} e_{2}+\ldots+\alpha_{n} e_{n},$$ где $\alpha_{1},\alpha_{2} \ldots\alpha_{n}$ — некоторые числа из поля, а $e_{1}, e_{2}, \ldots, e_{n}$ — базис $X$. Данная линейная комбинация называется разложением вектора $x$ по базису, а сами числа $\alpha_{1},\alpha_{2} \ldots\alpha_{n}$ называются координатами вектора $x$ относительно этого базиса.

Лемма 1. Каждое конечномерное пространство является линейной оболочкой своего базиса.

Определение 2. Любые два базиса конечномерного пространства представляют из себя эквивалентные системы.

Из определения 2 получаем числовую характеристику пространства.

Определение 3. Размерностью ненулевого конечномерного пространства называется число векторов его базиса. Размерность нулевого пространства равна $0$.

Обозначение для размерности пространства $X$: $\operatorname{dim} Х$.

Свойства базиса

  1. Любая линейно независимая система $n$-мерного пространства, содержащая $n$ векторов, является базисом этого пространства.
  2. Любая система $n$-мерного пространства, содержащая более $n$ векторов линейно зависима.
  3. Любой вектор конечномерного пространства однозначно линейно выражается через базис.

Еще одно свойство базиса сформулируем в виде небольшой леммы и докажем ее.

Лемма 2. Каждую линейно независимую систему векторов конечномерного пространства можно пополнить до базиса этого пространства.

Пусть задано линейное пространство $X$ над произвольным полем $\mathbb{P}$. Пусть в этом пространстве задана ЛНЗ система векторов $\left\langle x_{1}, x_{2}, \ldots, x_{k}\right\rangle.$ А размерность $\operatorname{dim} Х = n $.

  1. При $k=n$ очевидно, что наша система векторов сама является базисом(свойство $1$).
  2. При $k<n$ рассмотрим множество всех ЛНЗ систем $x$, для которых наша система — подсистема. Выберем систему содержащую максимальное количество векторов: $$\langle x_{1}, \ldots, x_{k}, x_{k+1}, \ldots x_{s}\rangle.$$

    Эта система максимально ЛНЗ в $X$, следовательно она является базисом. Тогда $s=n$ и отсюда следует, что $\langle x_{k+1}, \ldots x_{n} \rangle$ — искомое дополнение.

Лемма 3 (критерий базиса). Система векторов является базисом пространства тогда и только тогда, когда она максимально линейно независима.

Примеры решения задач

Рассмотрим несколько типовых задач нахождения базиса и размерности.

  1. Показать, что следующая система векторов образуют линейное пространство. Найти базис и размерность. Все $n$-мерные векторы вида $(\alpha, \beta, \alpha, \beta, \alpha, \beta, \ldots)$, где $\alpha$ и $\beta$ — любые числа. $$L=\{x=(\alpha, \beta, \alpha, \beta, \ldots) | \alpha, \beta \in \mathbb{R}\}$$
    Решение

    $$\forall x, y \in L: \forall a, b \in \mathbb{R}(a x+b y) \in L ?$$

    Покажем, что система векторов образуют линейное пространство: $$a x+b y=a \cdot(\alpha, \beta, \alpha, \beta \ldots)+b(\varphi, \gamma, \varphi, \gamma \ldots) =$$ $$=(a \alpha, a \beta, a \alpha, a \beta \ldots)+(\varphi b, \gamma b, \varphi b, \gamma b \ldots)=$$ $$=(a \alpha+b \varphi, a \beta+\gamma b, a \alpha+b \varphi, a \beta+\gamma b \ldots) \in L.$$

    Построим стандартный базис: $$e_{1}=(1,0,0,0, \ldots, 0)\rightarrow e_{1}^{\prime}=(1,0,1,0, \ldots)$$ $$e_{2}=(0,1,0,0, \ldots, 0)\rightarrow e_{1}^{\prime}=(0,1,0,1, \ldots)$$ $$e_{3}=(0,0,1,0, \ldots, 0)\rightarrow e_{3}^{\prime}=(1,0,1,0, \ldots)$$ $$e_{4}=(0,0,0,1, \ldots, 0)\rightarrow e_{4}^{\prime}=(0,1,0,1, \ldots)$$

    Следовательно, $\left\langle e_{1}^{\prime}, e_{2}^{\prime}\right\rangle$ — базис $L$. Размерность равна 2.

  2. Определить является ли $L$ линейным подпространством пространства $X$. Найти базис и размерность. $$X=M_{2}(\mathbb{R})$$ $$L=\left\{\left(\begin{array}{l} a & b \\ c & d \end{array}\right) \in M_{2}(\mathbb{R}) | a+b+c=d\right\}.$$
    Решение

    $$\forall A, B \in L, \forall \alpha, \beta \in \mathbb{R}$$ $$\alpha A+\beta B \in L ?$$

    Покажем сначала принадлежность к $M_{2}(\mathbb{R})$. Пусть $$A=\left(\begin{array}{ll} a_{1} & b_{1} \\ c_{1} & d_{1} \end{array}\right) \quad B=\left(\begin{array}{ll} a_{2} & b_{2} \\ c_{2} & d_{2} \end{array}\right),$$ тогда $$\alpha \cdot\left(\begin{array}{ll} a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right)+\beta \cdot\left(\begin{array}{ll} a_{2} & b_{2} \\ c_{2} & d_{2} \end{array}\right)= \left(\begin{array}{ll} \alpha a_{1} & \alpha b_{1} \\ \alpha c_{1} & \alpha d_{1} \end{array}\right)+\left(\begin{array}{ll} \beta a_{2} & \beta b_{2} \\ \beta c_{2} & \beta d_{2} \end{array}\right)=$$ $$=\left(\begin{array}{ll} \alpha a_{1}+\beta a_{2} & \alpha b_{1}+\beta b_{2} \\ \alpha c_{1}+\beta c_{2} & \alpha d_{1} +\beta d_{2} \end{array}\right) \in M_{2}(\mathbb{R})$$

    Можем доказать, что $L$ является подпространством $X$. $$\left.\begin{array}{l} d_{1}=a_{1}+b_{1}+c_{1} \\ d_{2}=a_{2}+b_{2}+c_{2} \end{array}\right\} \Rightarrow\begin{array}{l} \alpha d_{1}=\alpha a_{1}+\alpha b_{1}+\alpha c_{1} \\ \alpha d_{2}=\alpha a_{2}+\alpha b_{2}+\alpha c_{2} \end{array} \Rightarrow$$ $$\Rightarrow \alpha d_{1}+\beta d_{2}=(\alpha a_{1}+ \beta a_{2})+(\alpha b_{1} + \beta b_{2})+(\alpha c_{1} + \beta c_{2}) \Rightarrow$$ $$\Rightarrow (\alpha A + \beta B) \in L \Rightarrow L \subset X.$$

    Теперь найдем базис исходя из условий.$$ E_{11}=\left(\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right)\rightarrow E_{11}^{\prime}=\left(\begin{array}{ll} 1 & 0 \\0 & 1\end{array}\right)$$ $$ E_{12}=\left(\begin{array}{ll} 0 & 1 \\ 0 & 0 \end{array}\right)\rightarrow E_{12}^{\prime}=\left(\begin{array}{ll} 0 & 1 \\0 & 1\end{array}\right)$$ $$ E_{21}=\left(\begin{array}{ll} 0 & 0 \\ 1 & 0 \end{array}\right)\rightarrow E_{21}^{\prime}=\left(\begin{array}{ll} 0 & 0 \\1 & 1\end{array}\right)$$ $$ E_{22}=\left(\begin{array}{ll} 0 & 0 \\ 0 & 1 \end{array}\right)\rightarrow \nexists$$

    Предполагаемый базис: $E^{\prime}=\left\langle E^{\prime}_{11}, E^{\prime}_{12}, E^{\prime}_{21} \right\rangle$. Проверим ЛНЗ нашего базиса.

    Пусть $$\alpha_{1}E^{\prime}_{11}+ \alpha_{2}E^{\prime}_{12}+ \alpha_{3}E^{\prime}_{21}=0,$$ тогда $$\left(\begin{array}{ll}\alpha_{1} & \alpha_{2} \\\alpha_{3} & \alpha_{1}+\alpha_{2}+\alpha_{3}\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\0 & 0\end{array}\right) \Rightarrow \alpha_{1}=\alpha_{2}=\alpha_{3}=0 \Rightarrow$$ $\Rightarrow$ по критерию ЛНЗ, $E^{\prime}$ — ЛНЗ.

    Покажем, что через нашу ЛНЗ систему выражается каждый вектор этого пространства. Вспомним, что по условию $d = a + b + c.$ Отсюда следует, что $$a \cdot\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right)+b \cdot\left(\begin{array}{ll} 0 & 1 \\ 0 & 1 \end{array}\right)+c\left(\begin{array}{ll} 0 & 0 \\ 1 & 1 \end{array}\right)=$$ $$=\left(\begin{array}{cc}a & b \\c & a+b+c \end{array}\right)=\left(\begin{array}{cc}a & b \\c & d\end{array}\right)=A \Rightarrow $$ $\Rightarrow \forall A \in L$ линейно выражается через $E^{\prime}$. А так как мы доказали, что $E^{\prime}$ — ЛНЗ, то $E^{\prime}$ — базис $L$. Размерность равна 3.

  3. Определить является ли $L$ линейным подпространством пространства $X$. Найти базис и размерность. $$X=\mathbb{R}_{4}[x]$$ $$L=\left\{f(x)=\mathbb{R}_{4}[x] | f(x): x^{2}+2\right\}.$$
    Решение

    Пусть $f(x) \in L$ и $f(x): x^{2}+2$, тогда $$f(x)=\left(x^{2}+2\right) \cdot\left(a x^{2}+b x+c\right).$$

    Докажем, что $$\forall \alpha, \beta \in \mathbb{R}, \forall f(x), g(x) \in L ?$$

    $$\alpha(a x^{2}+b x+c)+\beta(a x^{2}+b x+c)=$$ $$(x^{2}+2)(\alpha a x^{2}+\alpha b x+\alpha c+\beta a x^{2}+\beta b x+\beta c)=$$ $$(x^{2}+2)(\alpha a x^{2}+\beta a x^{2}+\alpha b x+\beta b x+\alpha c+\beta c) \in L$$

    Теперь найдем базис: $$f(x)=a x^{4}+b x^{3}+x^{2} c+2 a x^{2}+2 b x+2 c,$$ тогда $$a\left(x^{4}+2 x^{2}\right)+b(x^{3}+2 x)+c(x^{2}+2)$$ и следовательно $$\begin{array}{l}e_{1}=x^{4}+2 x^{2} \\ e_{2}=x^{3}+2 x \\ e_{3}=x^{2}+2 \end{array}$$

    Наш предполагаемый базис: $e=\langle e_{1}, e_{2}, e_{3}\rangle$. Докажем ЛНЗ нашего базиса. $$\alpha_{1} e_{1}+\alpha_{2} e_{2}+\alpha_{3} e_{3}=$$ $$=\alpha_{1} x^{4}+\alpha_{1} 2 x^{2}+\alpha_{2} x^{3}+\alpha_{2} 2 x+\alpha_{3} x^{2}+2 \alpha_{3}=0$$ $$\Rightarrow \alpha_{1}=\alpha_{2}=\alpha_{3}=0 \Rightarrow$$ $\Rightarrow$ по критерию ЛНЗ, $e$ — ЛНЗ.

    Покажем, что через нашу ЛНЗ систему выражается каждый вектор этого пространства. $$\forall f(x) \in L : f(x)=a x^{4}+b x^{3}+x^{2} c+2 a x^{2}+2 b x+2 c$$ $$\exists \alpha_{1}=a, \alpha_{2}=b, \alpha_{3}=c.$$

    Тогда $$\alpha_{1} e_{1}+\alpha_{2} e_{2}+\alpha_{3} e_{3}=$$ $$= a(x^{4}+2 x^{2})+b(x^{3}+2 x)+c(x^{2}+2)$$ $$a x^{4}+2 a x^{2}+b x^{3}+2 b x+c x^{2}+2 c=$$ $$=a x^{4}+b x^{3}+x^{2} c+2 a x^{2}+2 b x+2 c = f(x) \Rightarrow$$ $\Rightarrow \forall f(x)$ линейно выражается через любой вектор $e=\langle e_{1}, e_{2}, e_{3}\rangle$. Тогда $e$ — базис. Размерность равна 3.

Базис и размерность линейного пространства, свойства

Тест для проверки знаний по теме «Базис и размерность линейного пространства, свойства».

Литература

  1. Личный конспект, составленный на основе лекций Белозерова Г.С..
  2. Воеводин В.В. Линейная алгебра М.: Наука, 1980.-400 с. (стр. 50-54)
  3. Фадеев Д.К. Лекции по алгебре. М.: Наука, 1984.-416 с. (стр. 301-305)
  4. Проскуряков И.В. Сборник задач по линейной алгебре. М.: Наука, 1984.-384 с. (стр. 204-211)

Изоморфизм линейных пространств. Критерий изоморфности. Применение понятия изоморфизма к решению задач.

Спойлер

Изоморфизм линейных пространств, свойства

Дано два конечномерных линейных пространства [latex] (X_1, \mathbb{P})[/latex] и [latex] (X_2, \mathbb{P})[/latex], заданных над одним полем [latex] \mathbb{P}[/latex](любое числовое поле)
[latex] X_1 \simeq X_2[/latex] (изоморфны), если:

  1. [latex] \exists f: X_1 \to X_2[/latex] (т.е.[latex] \forall a\in X_1[/latex] сопоставляется вектор [latex] a`\in X`[/latex], образ вектора[latex] a[/latex], причём различные векторы из [latex] X[/latex] обладают различными образами и всякий вектор из [latex] X`[/latex] служит образом некоторого вектора из [latex] X[/latex]).
  2. [latex] f(\alpha a+\beta b) = \alpha f(a) + \beta f(b)[/latex], [latex] \forall a,b \in X_1[/latex], [latex] \forall \alpha, \beta \in P[/latex].

Свойства изоморфизма:

  1. [latex] f(0)= 0[/latex];
  2. [latex] f(-x)= f(x)[/latex];
  3. [latex] f(\sum\limits_{j=1}^k \alpha_je_j)= \sum\limits_{j=1}^k \alpha_j f(e_j)[/latex];
  4. ЛНЗ [latex] \to^f[/latex] ЛНЗ;
  5. ЛЗ [latex] \to^f[/latex] ЛЗ;
  6. Базис отображается в базис;
  7. dim [latex] X_1[/latex]= dim[latex] X_2[/latex];
  8. Прямая сумма [latex] \to[/latex] прямая сумма.

Критерий изоморфности:

[latex] X_1 \simeq X_2 \Leftrightarrow [/latex] dim [latex] X_1 = [/latex] dim [latex]X_2.[/latex]

[свернуть]

ПРИМЕР

Любой геометрический радиус-вектор плоскости, представим в виде:
[latex] x = ix_1 + jx_2[/latex]
svg111
При этом, если [latex] x = ix_1 + jx_2[/latex], [latex] y = iy_1 + jy_2[/latex], то
[latex] x + y = (x_1 + y_1)i +(x_2 + y_2)j[/latex] и [latex] \alpha x = (\alpha x_1)i + (\alpha x_2)j[/latex].
В результате устанавливаем взаимно однозначное соответствие [latex] x \Leftrightarrow (x_1, x_2)[/latex], соответствие между пространствами геометрических радиусов-векторов плоскости и двумерных арифметических векторов. Очевидно, оно будет изоморфизмом данных пространств, так как
если [latex] x \Leftrightarrow (x_1, x_2)[/latex], [latex] y \Leftrightarrow (y_1, y_2)[/latex], то [latex] x + y \Leftrightarrow (x_1 + y_1, x_2 + y_2)[/latex] и [latex] \alpha x \Leftrightarrow ( \alpha x_1, \alpha x_2 )[/latex].

Задача

Даны пространства [latex] A = \mathbb{R}[/latex] и [latex] B = \mathbb{R}[/latex]. Установить между ними соответствие, которое:

  1. будет являться изоморфизмом;
  2. не будет являться изоморфизмом.

Решение

  1. Первое, что мы делаем, это каждому числу [latex] a \in \mathbb{R}[/latex] ставим в соответсвие число [latex] b \in \mathbb{R}[/latex], придерживаясь правила: [latex] b= 2a[/latex]. Каждое [latex] b \in \mathbb{R}[/latex] будет отвечать единственному числу [latex] a= \frac{1}{2}b[/latex]. Отсюда следует, что утверждение [latex] b= 2a[/latex] устанавливает взаимно однозначное соответствие [latex] \mathbb{R} \Leftrightarrow \mathbb{R}[/latex]. Если [latex] a_1 \Leftrightarrow b_1[/latex] и [latex] a_2 \Leftrightarrow b_2[/latex], т.е. [latex] b_1 = 2a_1[/latex] и [latex] b_2= 2a_2[/latex] то [latex] (a_1+a_2) \Leftrightarrow (b_1+b_2)[/latex], так как [latex] b_1+b_2= 2a_1+2a_2 = 2(a_1+a_2)[/latex]. Если [latex] a \Leftrightarrow b[/latex], т.е. [latex] b= 2a[/latex], то [latex] \lambda a \Leftrightarrow \lambda b[/latex] для каждого действительного числа [latex] \lambda [/latex], так как [latex] \lambda b= \lambda 2a= 2 \lambda a[/latex]. Как результат, в данном соответствии [latex] b= 2a[/latex] сохраняются линейные операции, и оно является изоморфизмом.
  2. Следующее взаимно однозначное соответствие, которое будем рассматривать [latex] \mathbb{R} \Leftrightarrow \mathbb{R}[/latex], устанавливается формулой [latex] b= a^3[/latex] (число сопоставляемое числу [latex] a= \sqrt[3]{b}[/latex]). Данное соответствие не будет являться изоморфизмом, потому что будет сохранять линейные операции. Как пример, если [latex] a \Leftrightarrow b[/latex], т.е. [latex] b= a^3[/latex], то [latex]{(2a)}^3= 8a^3= 8b[/latex]. Значит, [latex] 2a \Leftrightarrow 8b[/latex], возникает противоречие условию [latex] \lambda a \Leftrightarrow \lambda b[/latex] для [latex] \lambda = 2[/latex] .

Задача

Проверить, являются ли изоморфными пространства:
[latex] X_1= \{ f(x) \in R[x] | f(x) \quad\vdots\quad (x^2+1) \}[/latex] и [latex] X_2[/latex], натянутое на систему векторов [latex] <a_1, a_2, a_3>. a_1=(0,0,1,0,1)[/latex], [latex] a_2=(0,1,0,1,0)[/latex] и [latex] a_3=(1,0,1,0,0)[/latex].

Решение

Найдем базис [latex] X_1[/latex]
[latex] \forall f(x) \in X_1 \Leftrightarrow f(x)= [/latex] [latex](x^2+1)(ax^2+bx+c)=[/latex] [latex]ax^4+bx^3+ax^2+cx^2+bx+c=[/latex] [latex]a(x^4+x^2)+b(x^3+x)+c(x^2+1)[/latex], таким образом [latex]<x^4+x^2,x^3+x,x^2+1>[/latex] — базис.
Очевидно, что система [latex] <a_1,a_2,a_3>[/latex], на которую натянуто [latex] X_2[/latex] ЛНЗ (линейно независимая система), dim [latex] X_1 =[/latex] dim [latex] X_2= 3[/latex]. Следовательно по критерию изоморфности [latex] X_1 \simeq X_2[/latex].

Источники

  1. Белозеров Г.С. Конспект лекций
  2. Проскуряков И.В. Сборник задач по линейной алгебре. Издание пятое, 1974.Стр. 170

Изоморфизм линейных пространств

Тест по теме: «Изоморфизм линейных пространств. Критерий изоморфности»