5.6.1 Первая теорема Лопиталя

5.6.1 Первая теорема Лопиталя
Следующая теорема содержит правило раскрытия неопределенности вида $\left [ \displaystyle\frac{0}{0} \right ]$ для случая, когда функции $f$ и $g$ имеют производные в проколотой окрестности точки $a$, а в самой точке $a$ могут оказаться и недифференцируемыми.

Первая теорема Лопиталя
Пусть функции $f$ и $g$ дифференцируемы на интервале $\left ( a,b \right )$, $\lim\limits_{x\to a+0}f(x)=0$, $\lim\limits_{x\to a+0}g(x)=0$ и ${g}'(x)\neq 0$ для всех $x\in\left ( a, b \right )$. Далее, пусть существует $$\lim\limits_{x\rightarrow a+0 } \displaystyle\frac{{f}'(x)}{{g}'(x)}= A ,$$ где $A$ может быть конечным $+\infty$, $-\infty$ или $\infty$. Тогда существует $$\lim\limits_{x\rightarrow a+0 } \displaystyle\frac{f(x)}{g(x)}$$ и этот предел равен  $A$.

Доопределим по непрерывности функции $f$ и $g$ в точке $a$, полагая $f(a)=g(a)=0$. Тогда для любого $x\in\left ( a, b \right )$ в силу теоремы Коши, найдется такая точка $\xi_{a}\in(a,x)$, что $$\displaystyle\frac{f(x)}{g(x)}= \displaystyle\frac{f(x)-f(a)}{g(x)-g(a)}=\displaystyle\frac{{f}'(\xi_{x})}{{g}'(\xi_{x})}.$$
Если мы покажем, что из условий $\lim\limits_{x\rightarrow a+0 } \displaystyle\frac{{f}'(x)}{{g}'(x)}= A$ и  $\xi_{a}\in(a,x)$ следует, что $\lim\limits_{x\rightarrow a+0 } \displaystyle\frac{{f}'(\xi_{a})}{{g}'(\xi_{a})}=A$, то сразу получим, что и $\lim\limits_{x\rightarrow a+0}\displaystyle\frac{f(x)}{g(x)}= A$
Итак, осталось показать, что условие $\lim\limits_{x\rightarrow a+0 } \displaystyle\frac{{f}'(x)}{{g}'(x)}= A$ влечет равенство $\lim\limits_{x\rightarrow a+0 } \displaystyle\frac{{f}'(\xi_{a})}{{g}'(\xi_{a})}=A$, где $\xi_{a}\in(a,x)$. Пусть $A$ конечно. Тогда для заданного $\varepsilon > 0$ найдем такое $\delta > 0$, что из условия $a<x<a+\delta$ следует неравенство $$\left | \displaystyle\frac{{f}'(x)}{{g}'(x)}-A \right |< \varepsilon.$$
Но из $a< \xi_x< x$ следует также, что и $a< \xi_x< a+\delta$ , и поэтому
$$\left | \displaystyle\frac{{f}'(\xi_x)}{{g}'(\xi_x)}-A \right |< \varepsilon.$$
Отсюда следует требуемое равенство
$$\lim\limits_{x\rightarrow a+0 } \displaystyle\frac{{f}'(\xi_x)}{{g}'(\xi_x)}=A.$$
Аналогично, с очевидными изменениями в форме записи, исчерпываются случаи $A=+\infty$, $A=-\infty$ и $A=\infty$.

Замечание. Теорема Лопиталя утверждает, что предел отношения функций равен пределу отношения производных, если последний существует. Однако может оказаться, что предел отношения функций существует, в то время, как предел отношения производных не существует, т. е. обратное теореме Лопиталя утверждение неверно. Приведем соответствующий пример.

Пример. Положим $f(x)=x^2\sin\displaystyle\frac{1}{x}$, $g(x)=x$. Ясно, что $ \displaystyle\frac{f(x)}{g(x)}=x\sin \displaystyle\frac{1}{x}\rightarrow 0(x\rightarrow 0)$. Но ${f}'(x)=2x\sin \displaystyle\frac{1}{x}-\cos \displaystyle\frac{1}{x}, {g}'(x)=1$, так что при  $x\rightarrow 0$ отношение $\displaystyle\frac{{f}'(x)}{{g}'(x)}$ не имеет предела, поскольку первое слагаемое в ${f}'(x)$ стремится к нулю, а $\cos \displaystyle\frac{1}{x}$ не имеет предела при $x\rightarrow 0$.

Примеры решения задач

Данные примеры читателю рекомендуется решить самому в качестве тренировки.

  1. $\large\lim\limits_{x\rightarrow 0}\displaystyle\frac{1-\cos4x}{x^2}$
    Решение

    $\left | \displaystyle\frac{0}{0} \right |=\lim\limits_{x\rightarrow 0} \displaystyle\frac{4\sin4x}{2x}=\lim\limits_{x\rightarrow 0} \displaystyle\frac{16\cos4x}{2}=8$

  2. $\large\lim\limits_{x\rightarrow 0}\displaystyle\frac{x-\sin x}{x^3}$
    Решение

    $\lim\limits_{x\rightarrow 0} \displaystyle\frac{1-\cos x}{3x^2}=\lim\limits_{x\rightarrow 0} \displaystyle\frac{\sin x}{6x}= \displaystyle\frac{1}{6}$

  3. $\large\lim\limits_{x\rightarrow 0}\displaystyle\frac{x^4}{x^2+2\cos x-2}$
    Решение

    $\lim\limits_{x\rightarrow 0} \displaystyle\frac{4x^3}{2x-2\sin x}=\lim\limits_{x\rightarrow 0} \displaystyle\frac{12x^2}{2-2\cos x}=\lim\limits_{x\rightarrow 0} \displaystyle\frac{24x}{2\sin x}=12$

  4. $\large\lim\limits_{x\rightarrow \infty }\displaystyle\frac{ \displaystyle\frac{\pi}{4}-\text{arctg}\:(1- \displaystyle\frac{1}{x})}{\sin\displaystyle\frac{1}{x}}$
    Решение

    $\lim\limits_{x\rightarrow \infty } \displaystyle\frac{ \displaystyle\frac{-1}{1+(1- \displaystyle\frac{1}{x})^2} \displaystyle\frac{1}{x^2}}{(\cos \displaystyle\frac{1}{x}) \displaystyle\frac{-1}{x^2}}=\lim\limits_{x\rightarrow \infty } \displaystyle\frac{ \displaystyle\frac{1}{1+(1- \displaystyle\frac{1}{x})^2}}{\cos \displaystyle\frac{1}{x}}= \displaystyle\frac{1}{2}$

Первая теорема Лопиталя

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме «Первая теорема Лопиталя».

Литература

Смотрите также

  1. Тер-Крикоров А. М., Шабунин М. И. Курс математического анализа: Учеб. пособие для вузов. – 3-е изд., исправл. / А. М. Тер-Крикоров, М. И. Шабунин. – Москва: ФИЗМАТЛИТ, 2001 (стр. 172-176)
  2. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 2 / Г. М. Фихтенгольц. — 5-е изд., стереотип. — Москва: Физматгиз, 1970 (стр. 601-603)
  3. Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. — 5-е изд., перераб. и доп. — Москва: Дрофа, 2003 (стр. 328-330)

5.6.2 Вторая теорема Лопиталя

$\DeclareMathOperator{\tg}{tg}$

Первая теорема Лопиталя предназначена для раскрытия неопределенности вида $\left[ \displaystyle\frac{0}{0} \right].$ Следующая теорема служит для раскрытия неопределенности вида $\left[ \displaystyle\frac{\infty}{\infty} \right] .$

Вторая теорема Лопиталя. Пусть функции $f$ и $g$ дифференцируемы на интервале $(a, b),\: g'(x)\: \neq \: 0 \:(x \: \in \: (a, b))$ и $\lim\limits_{x \to a + 0} f(x) \: = \: \infty,\: \lim\limits_{x \to a + 0} g(x) \:  = \infty,$ $$\lim\limits_{x \to a + 0} \displaystyle\frac {f'(x)}{g'(x)}= A,$$
где $A$ может быть конечным $, + \infty ,\: -\infty ,$ или $\infty$. Тогда существует
$ \lim\limits_{x \to a + 0} \displaystyle\frac {f(x)}{g(x)}$
и этот предел равен $A.$

Рассмотрим сначала случай конечного $A.$ Зададим $\varepsilon > 0$ и найдем такое $\delta > 0,$ что для всех $\xi$ $\in$ $(a,$ $a$ $+$ $\delta$) справедливо неравенство $$ \left| \displaystyle\frac{f'(\xi)}{g'(\xi)} -A \right| < \frac {\varepsilon} {4} .$$
Зафиксируем $y$ $\in$ $(a,$ $a$ $+$ $\delta).$ Тогда для любого $x$ $\in$ $(a, y),$ в силу теоремы Коши, найдется такое $\xi$  $\in$ $(x, y),$ что
$$ \displaystyle\frac { f(y) -f(x)} {g(y) -g(x)} = \displaystyle\frac { f'(\xi)} {g'(\xi)} .$$
Поскольку $\xi$ $\in$ $(a,$ $a$ $+$ $\delta),$ то получаем
$$\left| \displaystyle\frac{ f(y) -f(x)} {g(y) -g(x)} -A \right| = \left| \displaystyle\frac{f'(\xi)}{g'(\xi)} -A \right| < \displaystyle\frac {\varepsilon} {4} .$$
Представим
$$\displaystyle\frac {f(x)} {g(x)} -A = \frac {f(y) -A \cdot g(y)} {g(x)} + \left( 1 -\frac{g(y)}{g(x)}\right) \left[ \displaystyle\frac { f(y) -f(x)} {g(y) -g(x)} -A \right] .$$
Если $y$ фиксировано, а $x \to a + 0$ ,то, т.к.  $g(x) \to \infty,$ имеем
$\displaystyle\frac {f(y) -A \cdot g(y)} {g(x)} \to 0$ и $\displaystyle\frac {g(y)} {g(x)} \to 0 .$
Значит, найдется такое $\delta _1 < \delta ,$ что для всех $x$ $\in$ $(a,$ $a$ $+$ $\delta _1)$ справедливы неравенства
$\left| \displaystyle\frac {f(y) -A \cdot g(y)} {g(x)}\right| < \displaystyle\frac {\varepsilon}{2} $ и $\left| \displaystyle\frac {g(y)} {g(x)}\right| < 1 .$
Тогда получим, что для $x$ $\in$ $(a,$ $a$ $+$ $\delta _1)$ справедливо неравенство $\left|\displaystyle\frac {f(x)} {g(x)} -A\right| < \displaystyle\frac{\varepsilon}{2} + 2 \cdot \displaystyle\frac{\varepsilon}{4} = \varepsilon ,$
и тем самым завершается доказательство теоремы для $A$ $\in$ $\mathbb {R}$
В случае $A = \infty$ представим
$$ \displaystyle\frac {f(x)}{g(x)} = \left( 1 -\displaystyle\frac{g(y)}{g(x)}\right) \left[ \displaystyle\frac { f(y) -f(x)} {g(y) -g(x)} -\displaystyle\frac { f(y) } {g(y) -g(x)} \right] .$$
Зададим $B$ и найдем такое $\delta > 0$, что для всех $x$ $\in$ $(a,$ $a$ $+$ $\delta)$ справедливо неравенство $$\left| \displaystyle\frac {f'(x)} {g'(x)}\right| > 4B .$$
Тогда для любых $x, y,$ таких, что $a < x < y < a + \delta ,$ по теореме Коши, найдется $\xi \in (x, y),$ для которого $\left| \displaystyle\frac { f(y)-f(x)} {g(y) -g(x)} \right| = \left| \displaystyle\frac {f'(\xi)} {g'(\xi)} \right| > 4B .$
Так как $\displaystyle\frac{g(y)}{g(x)} \to 0$ и $\displaystyle\frac { f(y)} {g(y) -g(x)} \to 0$ при $x \to a + 0 ,$ то найдется $\delta _1 <  \delta,$ такое, что при $x$ $\in$ $(a,$ $a$ $+$ $\delta _1)$
$\left| \displaystyle\frac{g(y)}{g(x)} \right| < \displaystyle\frac{1}{2}$ и $\left| \displaystyle\frac { f(y)} {g(y) -g(x)} \right| < 2B .$
Тогда для $x$ $\in$ $(a,$ $a$ $+$ $\delta _1)$ получим
$\left| \displaystyle\frac{f(x)}{g(x)} \right| > \displaystyle\frac{1}{2}
\left[ \left| \displaystyle\frac { f(y)-f(x)} {g(y) -g(x)} \right| -\left| \frac { f(y)} {g(y) -g(x)} \right| \right] \geqslant \displaystyle\frac{1}{2} \left[ 4B -2B \right] = B ,$
и тем самым завершается рассмотрение случая $ A =\infty .$
В случаях $A = + \infty$ и $A = -\infty$ изменения в доказательстве очевидны.

Замечание 1. Обе теоремы Лопиталя аналогичным образом могут быть доказаны для случаев $x \to b -0, x \to x_0, x \to + \infty, x \to -\infty$ и $x \to \infty.$

Замечание 2. Доказательство первой теоремы Лопиталя может быть получено аналогично доказательству второй теоремы Лопиталя. Мы рассмотрели более простое доказательство первой теоремы,которое неприменимо для доказательства второй теоремы, т.к. в условиях второй теоремы функции $f$ и $g$ нельзя доопределить по непрерывности в точке $a,$ как это было сделано при доказательстве первой теоремы.

Примеры решения задач

Рассмотрим примеры задач, для решения которых может использоваться вторая теорема Лопиталя. Читателю с целью самопроверки предлагается решить данные примеры самому, а затем сверить свое решение с приведенным.

  1. Найти предел $\lim\limits_{x \to \infty} \displaystyle\frac {\ln x}{x}$
  2. Решение

    $\lim\limits_{x \to \infty} \displaystyle\frac {\ln x}{x} = \left[\displaystyle\frac{\infty}{\infty} \right]=\lim\limits_{x \to \infty} \frac {(\ln x)’}{(x)’}= \lim\limits_{x \to \infty} \frac {\displaystyle\frac{1}{x}}{1}= \lim\limits_{x \to \infty} \displaystyle\frac {1}{x} = 0$

  3. Найти предел $\lim\limits_{x \to \infty} \displaystyle\frac {e^x}{x^2}$
  4. Решение

    $\lim\limits_{x \to \infty} \displaystyle\frac {e^x}{x^2} = \left[\displaystyle\frac{\infty}{\infty} \right]=\lim\limits_{x \to \infty} \displaystyle\frac {(e^x)’}{(x^2)’}= \lim\limits_{x \to \infty} \displaystyle\frac {e^x}{2x}= \lim\limits_{x \to \infty} \displaystyle\frac {e^x}{2} = \infty$

  5. Найти предел $\lim\limits_{x \to \infty} \displaystyle\frac {x}{\ln^3 x}$
  6. Решение

    $\lim\limits_{x \to \infty} \displaystyle\frac { x}{\ln^3 x} = \left[\displaystyle\frac{\infty}{\infty} \right]=\lim\limits_{x \to \infty} \displaystyle\frac {(x)’}{(\ln^3 x)’}= \\ = \lim\limits_{x \to \infty} \displaystyle\frac {1}{\displaystyle\frac{3 \ln^2 x}{x}}= \lim\limits_{x \to \infty} \displaystyle\frac{1}{3} \displaystyle\frac {x}{\ln x^2} = \displaystyle\frac{\infty}{\infty}=\displaystyle\frac{1}{3} \lim\limits_{x \to \infty} \frac {1}{\displaystyle\frac{2 \ln x}{x}} = \displaystyle\frac{1}{6} \lim\limits_{x \to \infty} \displaystyle\frac {1}{\displaystyle\frac{1}{x}}=\displaystyle\frac{1}{6} \lim\limits_{x \to \infty} x = 0$

  7. Найти предел $\lim\limits_{x \to 0} \displaystyle\frac {\ln x}{1 +3 \ln \sin x}$
  8. Решение

    $\lim\limits_{x \to 0} \displaystyle\frac {\ln x}{1 +3 \ln \sin x} = \left[\displaystyle\frac{\infty}{\infty} \right]=\lim\limits_{x \to 0} \frac {(\ln x)’}{(1 +3 \ln \sin x)’}= \lim\limits_{x \to 0} \displaystyle\frac {\displaystyle\frac{1}{x}}{3 \displaystyle\frac{\cos x}{\sin x}}= \lim\limits_{x \to 0} \displaystyle\frac{\sin x}{3 x \cos x} =\frac {1}{3}$

  9. Найти предел $\lim\limits_{x \to \infty} (1 + x^2)^{\displaystyle\frac{1}{x}}$
  10. Решение

    Прологарифмируем исходное выражение $ \displaystyle\frac{1}{x}\ln (1 + x^2) = \displaystyle\frac{\ln (1 + x^2)}{x}$
    Найдем $\lim\limits_{x \to \infty} \displaystyle\frac{\ln (1 + x^2)}{x} = \left[\displaystyle\frac {\infty}{\infty}\right] = \lim\limits_{x \to \infty} \displaystyle\frac{2x}{1 + x^2} = \lim\limits_{x \to \infty} \frac{2}{2x} = 0$
    Так как $\ln (1 + x^2)^{\displaystyle\frac{1}{x}}$ функция непрерывная на промежутке $(0;1),$ то $\ln \lim\limits_{x \to \infty} (1 + x^2)^{\displaystyle\frac{1}{x}} = \lim\limits_{x \to \infty} \ln \: (1 + x^2)^{\displaystyle\frac{1}{x}} = 0.$ Следовательно, $\lim\limits_{x \to \infty} (1 + x^2)^{\displaystyle\frac{1}{x}} = e^0$ или $\lim\limits_{x \to \infty} (1 + x^2)^{\displaystyle\frac{1}{x}} = 1$

Вторая теорема Лопиталя

Вы можете проверить свои знания по данной теме, пройдя этот тест

Таблица лучших: Вторая теорема Лопиталя

максимум из 5 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

См. также: