7.5 Свойства интеграла

$\DeclareMathOperator{\arctg}{arctg}$ 1. Линейность интеграла. Если функции $f$ и $g$ интегрируемы на отрезке $\lbrack a, b\rbrack$, а числа $\alpha, \beta \in \mathbb {R}$, то
$$\int\limits_a^b \lbrack\alpha f\left(x\right) + \beta g\left(x\right)\rbrack\,dx = \alpha\int\limits_a^b f\left(x\right)\,dx + \beta\int\limits_a^b g\left(x\right)\,dx.$$

Это свойство получено нами ранее при доказательстве интегрируемости линейной комбинации.

2. Аддитивность интеграла. Пусть числа $b < a$. Зададим точки $a = x_{0} > x_{1} > \ldots > x_{n} = b,$ выберем точки $\xi_{i} \in \lbrack x_{i+1}, x_{i}\rbrack$ и составим сумму $\displaystyle\sigma = \sum\limits_{i=0}^{n-1} f\left(\xi_{i}\right)\Delta x_{i}.$ Заметим, что в этой сумме все $\Delta x_{i} < 0.$ Ясно, что эту сумму можно получить как интегральную сумму на $\lbrack b, a\rbrack,$ только с противоположным знаком. Это приводит к следующему определению.

Определение. Пусть $b < a$ и функция $f$ интегрируема на $\lbrack b, a\rbrack.$ Тогда по определению полагаем
$$\int\limits_a^b f\left(x\right)\,dx = -\int\limits_b^a f\left(x\right)\,dx.$$
Далее, для каждой функции $f$, определенной в точке $a$, полагаем по определению

$$\int\limits_a^a f\left(x\right)\,dx = 0.$$

Теорема. Пусть $a, b, c$ — произвольные точки на действительной прямой. Если функция $f$ интегрируема на наибольшем из отрезков с концами в двух из этих точек, то она интегрируема также и на двух других отрезках, и справедливо равенство
$$\int\limits_a^b f\left(x\right)\,dx = \int\limits_a^c f\left(x\right)\,dx + \int\limits_c^b f\left(x\right)\,dx.$$

Пусть, например, $a < c < b$ и функция $f$ интегрируема на $\lbrack a, b\rbrack.$ Тогда, по доказанному ранее свойству 4, она интегрируема на отрезках $\lbrack a, c\rbrack$ и $\lbrack c, b\rbrack.$ Возьмем произвольное разбиение $a = x_{0} < x_{1} < \ldots < x_{n} = b$, такое, что $c$ является одной из точек деления. Выберем промежуточные точки $\xi_{i}$ и рассмотрим интегральную сумму $\displaystyle\sigma = \sum\limits_{i=0}^{n-1} f\left(\xi_{i}\right)\Delta x_{i}$. Если $c = x_{j}$, то эту сумму разобьем на две: $\displaystyle\sigma = \sum\limits_{i=0}^{j-1} f\left(\xi_{i}\right)\Delta x_{i} + \sum\limits_{i=j}^{n-1} f\left(\xi_{i}\right)\Delta x_{i}$. При $d(\Pi) \to 0$ первая сумма справа стремится к $\displaystyle\int\limits_a^c f\left(x\right)\,dx$, вторая — к $\displaystyle\int\limits_c^b f\left(x\right)\,dx$, а сумма $\sigma$ стремится к $\displaystyle\int\limits_a^b f\left(x\right)\,dx$. Переходя к пределу при $d(\Pi) \to 0$, получим требуемое равенство.
Пусть теперь $c < a < b$. Тогда, по уже доказанному,
$$\int\limits_c^b f\left(x\right)\,dx = \int\limits_c^a f\left(x\right)\,dx + \int\limits_a^b f\left(x\right)\,dx.$$
Отсюда следует
$$\int\limits_a^b f\left(x\right)\,dx = \int\limits_c^b f\left(x\right)\,dx-\int\limits_c^a f\left(x\right)\,dx = \int\limits_a^c f\left(x\right)\,dx + \int\limits_c^b f\left(x\right)\,dx$$
и теорема доказана полностью.

3. Интеграл от модуля. Пусть функция $f$ интегрируема на отрезке $\lbrack a, b\rbrack \left(a < b\right)$. Тогда
$$\left|\int\limits_a^b f\left(x\right)\,dx\right| \leqslant \int\limits_a^b \left|f\left(x\right)\right| \,dx.$$

Действительно, интегрируемость модуля интегрируемой функции доказана ранее. Докажем неравенство. Для этого выберем произвольное разбиение отрезка $\lbrack a, b\rbrack.$ Тогда для интегральных сумм будем иметь следующее неравенство:
$$\left|\sum\limits_{i=0}^{n-1} f\left(\xi_{i}\right)\Delta x_{i}\right| \leqslant \sum\limits_{i=0}^{n-1} \left|f\left(\xi_{i}\right)\right|\Delta x_{i}.$$
При стремлении к нулю диаметра разбиения интегральная сумма под знаком модуля в левой части стремится к к $\displaystyle\int\limits_a^b f\left(x\right)\,dx$, а сумма справа стремится к $\displaystyle\int\limits_a^b \left|f\left(x\right)\right|\,dx$. Переходя к пределу при $d(\Pi) \to 0$, получаем требуемое неравенство для интегралов.

4. Монотонность интеграла. Пусть функции $f$ и $g$ интегрируемы на $\lbrack a, b\rbrack \left(a < b\right)$ и $f\left(x\right)\leqslant g\left(x\right)$ для всех $x \in \lbrack a, b\rbrack.$ Тогда
$$\int\limits_a^b f\left(x\right)\,dx \leqslant \int\limits_a^b g\left(x\right)\,dx.$$

Действительно, возьмем произвольное разбиение отрезка $\lbrack a, b\rbrack$ и выберем промежуточные точки $\xi_{i}$. Тогда $f\left(\xi_{i}\right)\leqslant g\left(\xi_{i}\right) \left(i = 0, 1, \ldots, n-1\right)$. Умножая эти неравенства на $\Delta x_{i} > 0$ и складывая, получим
$$\sum\limits_{i=0}^{n-1} f\left(\xi_{i}\right)\Delta x_{i}\leqslant\sum\limits_{i=0}^{n-1} g\left(\xi_{i}\right)\Delta x_{i}.$$
Отсюда, устремляя к нулю диаметр разбиения, получаем требуемое неравенство.

Следствие 1. Пусть $f$ — неотрицательная интегрируемая функция на $\lbrack a, b\rbrack \left(a < b\right)$. Тогда
$$\int\limits_a^b f\left(x\right)\,dx \geqslant 0.$$

Следствие 2. Если интегрируемая функция $f$ строго положительна на $\lbrack a, b\rbrack \left(a < b\right)$, то и $$\int\limits_a^b f\left(x\right)\,dx > 0.$$

Действительно, в силу критерия Лебега , найдется точка $x_{0}\in\lbrack a, b\rbrack$, в которой функция непрерывна . Поскольку $f\left(x_0\right) > 0$, то найдется такое $\delta > 0$, что $\displaystyle f\left(x\right) > \frac{1}{2}f\left(x_0\right)$ для всех $x \in \left(x_0-\delta, x_0 + \delta\right) \cap \lbrack a, b\rbrack.$ Выберем отрезок $\lbrack\alpha, \beta\rbrack \subset \left(x_0-\delta, x_0 + \delta\right) \cap \lbrack a, b\rbrack, a\leqslant\alpha < \beta\leqslant b$.Тогда, в силу свойства аддитивности интеграла, получим $$\int\limits_a^b f\left(x\right)\,dx = \int\limits_a^\alpha f\left(x\right)\,dx + \int\limits_\alpha^\beta f\left(x\right)\,dx + \int\limits_\beta^b f\left(x\right)\,dx.$$ Первый и третий интегралы справа неотрицательны в силу следствия, а для второго интеграла, учитывая неравенство $\displaystyle f\left(x\right) \geqslant \frac{1}{2} f\left(x_0\right)$, из свойства монотонности интеграла получим $$\int\limits_\alpha^\beta f\left(x\right)\,dx \geqslant \int\limits_\alpha^\beta \frac{1}{2}f\left(x_0\right)\,dx = \frac{1}{2}f\left(x_0\right)\left(\beta-\alpha\right) > 0.$$
Таким образом, $\displaystyle\int\limits_a^b f\left(x\right)\,dx > 0$.

Следствие 3.Пусть функция $f$ интегрируема на $\lbrack a, b\rbrack$ и $m \leqslant f\left(x\right) \leqslant M$ для всех $x \in \lbrack a, b\rbrack$. Тогда
$$ \begin{equation}\label{prop_of_int_first}m\left(b-a\right) \leqslant \int\limits_a^b f\left(x\right)\,dx \leqslant M\left(b-a\right)\end{equation}.$$

Это следствие сразу вытекает из свойства монотонности интеграла.

Замечание. В условиях следствия 3 найдется такое число $\mu \in \lbrack m, M\rbrack$, что
$$\int\limits_a^b f\left(x\right)\,dx = \mu\left(b-a\right).$$

Действительно, положим $\displaystyle\mu = \frac{1}{\left(b-a\right)}\int\limits_a^b f\left(x\right)\,dx$. Тогда, по следствию 3, $m \leqslant \mu \leqslant M$.

Отметим, что при $a > b$ в такой формулировке это замечание остается в силе, в то время как знаки неравенств в $\eqref{prop_of_int_first}$ меняются на противоположные.

Следствие 4. Если функция $f$ непрерывна на $\lbrack a, b\rbrack$, то найдется такая точка $\xi \in \lbrack a, b\rbrack$, что
$$ \int\limits_a^b f\left(x\right)\,dx = f\left(\xi\right)\left(b-a\right).$$

Действительно, пусть $m$ и $M$ соответственно нижняя и верхняя грани функции $f$ на отрезке $\lbrack a, b\rbrack$, они достигаются в силу первой теоремы Вейерштрасса. По уже доказанному, найдется точка $\mu \in \lbrack m, M\rbrack$, такая, что $\displaystyle\int\limits_a^b f\left(x\right)\,dx = \mu \left(b-a\right)$. По теореме Больцано-Коши о промежуточном значении, найдется такая точка $\xi \in \lbrack a, b\rbrack$, что $f\left(\xi\right) = \mu.$

Замечание. Следствие 4 иногда называют теоремой о среднем значении. Оно тесно связано с теоремой Лагранжа, которую также называют теоремой о среднем значении в дифференциальном исчислении.

Примеры решения задач

Данные примеры читателю рекомендуется решить самому в качестве тренировки.

  1. Оценить интеграл $\displaystyle\int\limits_{0}^{2\pi} \frac{\,dx}{\sqrt{5 + 2\sin{x}}}$.
    Решение

    Оценим подынтегральную функцию:
    $$-1 \leqslant \sin{x} \leqslant 1 \Rightarrow$$
    $$3 \leqslant 5 + 2\sin{x} \leqslant 7 \Rightarrow$$
    $$\sqrt{3} \leqslant \sqrt{5 + 2\sin{x}} \leqslant \sqrt{7} \Rightarrow$$
    $$\frac{1}{\sqrt{7}} \leqslant \frac{1}{\sqrt{5 + 2\sin{x}}} \leqslant \frac{1}{\sqrt{3}}.$$
    Отсюда и из монотонности интеграла следует, что
    $$\int\limits_0^{2\pi} \frac{\,dx}{\sqrt{7}} \leqslant \int\limits_0^{2\pi}\frac{\,dx}{\sqrt{5 + 2\sin{x}}}\leqslant\int\limits_0^{2\pi} \frac{\,dx}{\sqrt{3}}.$$
    Таким образом,
    $$\frac{2\pi}{\sqrt{7}} \leqslant \int\limits_0^{2\pi}\frac{\,dx}{\sqrt{5 + 2\sin{x}}}\leqslant\frac{2\pi}{\sqrt{3}}.$$

  2. Найти определенный интеграл $\displaystyle\int\limits_0^2 \left|1-x\right|\,dx$.
    Решение

    example
    Из аддитивности интеграла
    $$\int\limits_0^2 \left|1-x\right|\,dx = \int\limits_0^1 \left|1-x\right|\,dx + \int\limits_1^2 \left|1-x\right|\,dx =$$ $$= \int\limits_0^1 \left(1-x\right)\,dx + \int\limits_1^2 \left(x-1\right)\,dx = \int\limits_0^1 \,dx-\int\limits_0^1 x \,dx + \int\limits_1^2 x \,dx-\int\limits_1^2 \,dx =$$ $$= 1-0-\left.\frac{x^2}{2}\right|_0^1 + \left.\frac{x^2}{2}\right|_1^2-(2-1) = 1-\frac{1}{2} + 0 + \frac{2^2}{2}-\frac{1}{2}-1 = 1.$$

  3. Найти определенный интеграл $\displaystyle\int\limits_0^3 \frac{x^4}{x^2 + 1}\,dx$
    Решение

    $$\int\limits_0^3 \frac{x^4}{x^2 + 1}\,dx = \int\limits_0^3 \frac{\left(x^4 -1\right) + 1}{x^2 + 1}\,dx =$$ $$= \int\limits_0^3 \frac{\left(x^2-1\right)\left(x^2 + 1\right) + 1}{x^2 + 1}\,dx = \int\limits_0^3 \left(x^2-1 + \frac{1}{x^2 + 1}\right)\,dx.$$
    Воспользовавшись свойством линейности интеграла, получим
    $$\int\limits_0^3 \left(x^2-1 + \frac{1}{x^2 + 1}\right)\,dx = \int\limits_0^3 x^2 \,dx-\int\limits_0^3 \,dx + \int\limits_0^3 \frac{\,dx}{x^2 + 1} =$$ $$= \left.\frac{x^3}{3}\right|_0^3-(3-0) + \left.\arctg{x}\right|_0^3 = 9-0-3+ \arctg{3}-\arctg{0} =$$ $$=6 + \arctg{3}.$$

  4. Не вычисляя интегралов, определить какой из них больше: $\displaystyle\int\limits_2^3 e^{-x}\sin{x}\,dx$ или $\displaystyle\int\limits_2^3 e^{-x^2}\sin{x}\,dx$.
    Решение

    Сравним подынтегральные функции. Пусть $f\left(x\right) = e^{-x}\sin{x}$, $g\left(x\right) = e^{-x^2}\sin{x}$.
    $$f\left(x\right)-g\left(x\right) = e^{-x}\sin{x}-e^{-x^2}\sin{x} = \sin{x}\left(e^{-x}-e^{-x^2}\right) =$$ $$= e^{-x}\sin{x}\left(1-e^{-x^2 + x}\right).$$
    На промежутке $\lbrack 2, 3\rbrack$ функции $\sin{x}$ и $e^{-x}$ принимают положительные значения (поскольку синус на $\lbrack 0, \pi\rbrack$ положительный). Значит нам достаточно сравнить с нулем выражение $1-e^{-x^2 + x}$. Поскольку на $\lbrack 2, 3\rbrack$ $x^2 > x$, то $-x^2 + x < 0$, а значит $e^{-x^2 + x} < 1$. $1-e^{-x^2 + x} > 0$, из чего следует, что $f\left(x\right) > g\left(x\right)$.
    Ответ:
    $$\int\limits_2^3 e^{-x}\sin{x}\,dx > \int\limits_2^3 e^{-x^2}\sin{x}\,dx.$$

  5. Найти среднее значение функции на данном отрезке: $\sin{x}$, $\displaystyle 0 \leqslant x \leqslant \frac{\pi}{2}$.
    Решение

    Воспользуемся четвертым следствием из свойства монотонности интеграла. Средним значением функции $f\left(x\right)$ на отрезке $\lbrack a, b\rbrack$ называется число $\displaystyle\mu = \frac{1}{\left(b-a\right)}\int\limits_a^b f\left(x\right)\,dx.$
    Из этого следует:
    $$\mu = \frac{1}{\left(\frac{\pi}{2}-0\right)} \int\limits_0^{\frac{\pi}{2}} \sin{x}\,dx = \left.-\frac{2}{\pi}\cos{x}\right|_0^{\frac{\pi}{2}} = -\frac{2}{\pi}(0-1) = \frac{2}{\pi}.$$
    Ответ: $\displaystyle\frac{2}{\pi}.$

Смотрите также

  1. Тер-Крикоров А. М., Шабунин М. И. Курс математического анализа: Учеб. пособие для вузов. – 3-е изд., исправл. / А. М. Тер-Крикоров, М. И. Шабунин. – Москва: ФИЗМАТЛИТ, 2001. – 672 с. — С. 326-332.
  2. Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. — 5-е изд., перераб. и доп. — Москва: Дрофа, 2003. — 703 с. — С. 570-582.
  3. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 2 / Г. М. Фихтенгольц. — 5-е изд., стереотип. — Москва: Физматгиз, 1970.- 800 с. — С. 108-116.

Свойства интеграла

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме «Свойства интеграла»

Определение и свойства кратного интеграла Римана

Необходимые понятия

Разбиения

Пусть множество $G$ измеримо по Жордану в $\mathbb{R}^{n}$. Совокупность измеримых по Жордану в $\mathbb{R}^{n}$ и попарно непересекающихся множеств $G_{1}, …, G_{N}$ называется разбиением $G$, если $G=\bigcup_{i=1}^{N}G_{i}.$ Разбиение будем обозначать буквой $T$.

Пусть $d\left ( G_{i} \right )$ есть диаметр множества $G_{i}$, т. е. $$d\left ( G_{i} \right )=\underset{x\in G_{i}, y\in G_{i}}{\sup}\rho \left ( x,y \right ).$$

Число $l\left ( T \right )=\underset{i=\overline{1,N}}{\max d\left(G_{i} \right )}$ будем называть мелкостью разбиения $T$.

Разбиение $T=\left \{ G_{i} \right \},$ $i=\overline{1,N}$, будем называть продолжением разбиения $ {T}’=\left \{ {G}’_{i} \right \},$ $i=\overline{1,N}$, и писать $T\prec{T}’$, если каждое из множеств $G_{i}$ является подмножеством некоторого множества ${G}’_{k}$. Очевидно, что из $T\prec{T}’$ следует, что $l\left ( T \right )\leq l\left ( {T}’ \right )$.

Интегральные суммы Римана. Суммы Дарбу

Пусть функция $f\left ( x \right )$ определена на измеримом по Жордану множестве $G$, а $T$ есть разбиение множества $G:~ T=\left \{ G_{i} \right \}, i=\overline{1,N}.$ Возьмем в каждом из множеств $G_{i}$ по точке $\xi _{i}$. Выражение $$\sigma _{T}\left ( f, \xi, G\right )=\sum_{i=1}^{N}f\left ( \xi _{i} \right )m\left ( G_{i} \right)$$ называется интегральной суммой Римана функции $f\left ( x \right )$ на множестве $G$, соответствующей разбиению $T$ и выборке $\xi =\left ( \xi _{1}, …, \xi _{N} \right )$. Иногда для краткости сумма Римана обозначается просто через $\sigma _{T}$.

Если функция $f\left ( x \right )$ ограничена на множестве $G$, то для любого разбиения $T=\left \{ G_{i} \right \}, i=\overline{1,N}$, определены числа $$m_{i}=\underset{x\in G_{i}}{\inf}f\left ( x \right ), ~~M_{i}=\underset{x\in G_{i}}{\sup }f\left ( x \right ).$$

Выражения $$S_{T}=\sum_{i=1}^{N}M_{i}m\left ( G_{i} \right ),~~s_{T}=\sum_{i=1}^{N}m_{i}m\left ( G_{i} \right )$$ называются верхней и нижней суммами Дарбу, соответствующими разбиению $T$.

Определение

Число $I$ называется пределом интегральной суммы $\sigma _{T}$ при мелкости разбиения $l\left ( T \right )\rightarrow 0$, если для любого $\varepsilon > 0$ найдется $\delta > 0$ такое, что для любого разбиения $T$ с мелкостью $l\left ( T \right )< \delta $ и для любой выборки выполняется неравенство $$\left | I-\sigma _{T}\left ( f, \xi , G \right ) \right |< \varepsilon.$$

Если число $I$ есть предел интегральной суммы при $l\left ( T \right )\rightarrow 0$, то будем писать $I=\underset{l\left ( T \right )\rightarrow 0}{\lim }\sigma _{T}$, само число $I$ будем называть кратным интегралом Римана от функции $f\left ( x \right )$ по множеству $G$, а функцию $f\left ( x \right )$ — интегрируемой на множестве $G$. Для кратного интеграла Римана используются следующие обозначения: $$\underset{G}{\int}f\left(x\right)dx,~~\underset{n}{\underbrace{\underset{G}{\int…\int }}}f\left ( x_{1}, …, x_{n} \right )dx_{1}…dx_{n}.$$

В случае $n=2$ интеграл называется двойным, а в случае $n=3$ — тройным. Обозначения для двойного и тройного интеграла: $$\underset{G}{\iint}f\left ( x,y \right )dxdy,~~\underset{G}{\iiint} f\left ( x,y,z \right)dxdydz.$$

Свойства кратного интеграла

Свойство 1.
Справедливо равенство $\underset{G}{\int}1\cdot dx=m\left ( G \right )$.

Спойлер

$\square$ Для любого разбиения $T$ выполнено равенство $$\sigma_{T}\left ( 1,\xi, G \right )=\sum_{i=1}^{N}m\left ( G_{i} \right ). ~~ \blacksquare$$

[свернуть]
Свойство 2.
Если $f\left ( x \right )> 0$ и $f\left ( x \right )$ — интегрируемая на измеримом по Жордану множестве $G$ функция, то $\underset{G}{\int }f\left ( x \right )dx\geq 0$.

Спойлер

Аналогично доказательству соответствующего свойства определенного интеграла от положительной функции.

[свернуть]
Свойство 3.
Если $f_{1}\left ( x \right )$ и $f_{2}\left ( x \right )$ — интегрируемые на множестве $G$ функции, а $\alpha$ и $\beta$ — произвольные вещественные числа, то и функция $\alpha f_{1}\left ( x \right )+\beta f_{2}\left ( x \right )$ интегрируема на $G$, причем $$\underset{G}{\int }\left ( \alpha f_{1}\left ( x \right ) + \beta f_{2}\left ( x \right ) \right )dx=$$ $$=\alpha \underset{G}{\int }f_{1}\left ( x \right )dx+\beta \underset{G}{\int }f_{2}\left ( x \right )dx.$$

Спойлер

Аналогично доказательству соответствующего свойства аддитивности определенного интеграла.

[свернуть]
Свойство 4.
Если $f_{1}\left ( x \right )$ и $f_{2}\left ( x \right )$ — интегрируемые на множестве $G$ функции и $f_{1}\left ( x \right )\leq f_{2}\left ( x \right )$ при $x\in G$, то $$\underset{G}{\int }f_{1}\left ( x \right )dx\leq \underset{G}{\int }f_{2}\left ( x \right )dx.$$

Спойлер

Аналогично доказательству соответствующего свойства монотонности определенного интеграла.

[свернуть]
Свойство 5.
Если функция $f\left ( x \right )$ непрерывна на измеримом связном компакте $G$, то найдется точка $\xi \in G$ такая, что $$\underset{G}{\int }f\left ( x\right )dx=f\left ( \xi \right )m\left ( G \right ).$$

Спойлер

$\square$ Если $m\left ( G \right )=0$, то равенство очевидно. Пусть $m\left ( G \right )>0$, $\mu =\underset{x\in G}{\min} f,~M=\underset{x \in G}{\max}f$. Тогда $\mu\leq f\left ( x \right )\leq M$ при $x \in G$, $\mu m\left ( G \right )\leq \underset{G}{\int }f\left ( x \right )dx\leq Mm\left ( G \right ).$

Следовательно, $$\mu \leq \frac{1}{m\left ( G \right )}\underset{G}{\int }f\left ( x \right )dx\leq M.$$

Функция, непрерывная на связном множестве и принимающая на нем значения $\mu$ и $M$, принимает и все промежуточные значения, а поэтому существует точка $\xi \in G$ такая, что $$f\left ( \xi \right )= \frac{1}{m\left ( G \right )}\underset{G}{\int }f\left ( x \right )dx. ~~\blacksquare$$

[свернуть]
Свойство 6.
Если $\left \{ G_{k} \right \}, k=\overline{1,m}$, есть разбиение множества $G,$ то функция $f\left ( x \right )$ интегрируема на множестве $G$ в том и только том случае, когда она интегрируема на каждом из множеств $G_{k},$ причем $$\underset{G}{\int}f\left ( x \right )dx= \sum_{k=1}^{m}\underset{G_{k}}{\int}f\left ( x \right )dx.$$
Свойство 7.
Произведение интегрируемых на измеримом множестве $G$ функций есть интегрируемая на множестве $G$ функция.

Спойлер

Аналогично доказательству соответствующего свойства определенного интеграла.

[свернуть]
Свойство 8.
Если функция $f\left ( x \right )$ интегрируема на измеримом множестве $G$, то функция $\left | f\left ( x \right ) \right |$ также интегрируема и $$\left | \underset{G}{\int}f\left ( x \right )dx \right |\leq \underset{G}{\int }\left | f\left ( x \right ) \right |dx.$$

Спойлер

Аналогично доказательству соответствующего свойства определенного интеграла.

[свернуть]

Примеры

Пример 1

Определить какой знак имеет интеграл $\underset{x^2+y^2\leq 4}{\iint}\sqrt[3]{1-x^2-y^2}dxdy.$

Спойлер

В силу свойства аддитивности кратного интеграла, имеем: $$\underset{x^2+y^2\leq 4}{\iint}\sqrt[3]{1-\left (x^2+y^2 \right )}dxdy=$$ $$=\underset{x^2+y^2\leq 1}{\iint}\sqrt[3]{1-\left (x^2+y^2 \right )}dxdy~~+\underset{1\leq x^2+y^2\leq 2}{\iint}\sqrt[3]{1-\left (x^2+y^2 \right )}dxdy~~+$$ $$+\underset{2\leq x^2+y^2\leq 4}{\iint}\sqrt[3]{1-\left (x^2+y^2 \right )}dxdy.$$
Для каждой точки $\left ( x,y \right )$ из круга $x^2+y^2\leq 1$ найдется точка $\left ( \bar{x},\bar{y} \right )$ из кольца $1\leq x^2+y^2\leq 2$ такая, что $\sqrt[3]{1-\left ( x^2+y^2 \right )}+\sqrt[3]{1-\left ( \bar{x^2}+\bar{y^2 }\right )}=0$, поэтому приходим к выводу, что $$\underset{x^2+y^2\leq 1}{\iint}\sqrt[3]{1-\left (x^2+y^2 \right )}dxdy~~+\underset{1\leq x^2+y^2\leq 2}{\iint}\sqrt[3]{1-\left (x^2+y^2 \right )}dxdy~~=$$
$$=\underset{x^2+y^2\leq 2}{\iint}\sqrt[3]{1-\left (x^2+y^2 \right )}dxdy,$$ $$\underset{x^2+y^2\leq 4}{\iint}\sqrt[3]{1-\left (x^2+y^2 \right )}dxdy~~=\underset{2\leq x^2+y^2\leq 4}{\iint}\sqrt[3]{1-\left (x^2+y^2 \right )}dxdy.$$
Так как $\sqrt[3]{1-\left (x^2+y^2 \right )}< 0$, когда $\left ( x,y \right )\in \left \{ 2\leq x^2+y^2 \leq 4\right \}$, то (принимая во внимание последнее равенство) исследуемый интеграл отрицателен.

При решении данного примера мы воспользовались тем, что интеграл Римана интегрируемой функции $f$ не зависит от способа разбиения области интегрирования и выбора точек $\xi_{i}$ в каждой из ячеек разбиения.

[свернуть]

Пример 2 (вычисление площади плоской фигуры с помощью двойного интеграла)

Вычислить площадь фигуры, занимающей область $D$, ограниченную линиями $x=y^2$ и $x+y=2$.

Спойлер

Если плоская фигура занимает область $D\subset XOY$, то ее площадь может быть вычислена с помощью двойного интеграла по его свойству о значении интеграла от функции, тождественно равной единице на области интегрирования. В результате получается формула для вычисления площади плоской фигуры с помощью двойного интеграла: $$S_{D}=\underset{D}{\iint}dS~~(*)$$


Строим область $D$ и записываем ее системой неравенств: $$D:\left\{\begin{matrix}-2\leq y\leq 1\\ y^{2}\leq x\leq 2-y\end{matrix}\right.$$ По формуле $(*)$ вычисляем площадь: $$S_{D}=\underset{D}{\iint }dS=\underset{D}{\iint }dxdy=\int\limits_{-2}^{1}dy\int\limits_{y^{2}}^{2-y}=$$ $$=\int\limits_{-2}^{1}dy~\cdot~x \Big|_{y^2}^{2-y}=\int\limits_{-2}^{1}\left ( 2-y-y^2 \right )dy=\left ( 2y-\frac{y^2}{2}-\frac{y^3}{3} \right )\Big|_{-2}^1=$$ $$2\left ( 1+2 \right )-\frac{1}{2}\left ( 1-4 \right )-\frac{1}{3}\left ( 1+8 \right )=4.5$$

Ответ: $S_{D}=4.5$ (кв. ед.).

[свернуть]

Пример 3 (вычисление объема с помощью двойного интеграла)

Пусть цилиндрический брус ограничен сверху непрерывной поверхностью $z=f\left (x,y \right)$, снизу — плоскостью $z=0$, с боков — цилиндрической поверхностью с образующими, параллельными оси $Oz$. Если указанная цилиндрическая поверхность вырезает из плоскости $Oxy$ квадрируемую замкнутую область $D$, то объем $V$ бруса вычисляется по формуле: $$V=\underset{D}{\iint}f\left ( x,y \right )dxdy.~~(**)$$

Найти объем тела, ограниченного поверхностями: $$z=x^2+y^2,~y=x^2,~y=1,~z=0.$$

Спойлер

Тело ограничено сверху параболоидом вращения $z=x^2+y^2$, снизу — плоскостью $Oxy$, с боков — цилиндрической поверхностью $y=x^2$ и плоскостью $y=1$, вырезающими из плоскости $Oxy$ квадрируемую замкнутую область $D=\left \{ -\leq x\leq 1,~x^2 \leq y \leq 1 \right \}.$ В точках множества $D$, симметричных относительно оси $Oy$, функция $z=x^2+y^2$ принимает равные значения, поэтому $$V=2\underset{x^2\leq y\leq 1}{\underset{0\leq x\leq 1}{\iint}}\left ( x^2+y^2 \right )dxdy=2\int\limits_{0}^{1}dx\int\limits_{x^2}^{1}\left ( x^2+y^2 \right )dy=$$ $$=2\int\limits_{0}^{1}\left ( x^2-x^4+\frac{1}{3}-\frac{x^6}{3} \right )dx=\frac{88}{105}.$$

[свернуть]

Кратный интеграл Римана

Тест: Кратный интеграл Римана.

Свойства определенного интеграла, связанные с отрезками интегрирования

Определение

Если [latex]f(x)[/latex] интегрируема в промежутке [latex]\left [ a,b \right ][/latex], то она интегрируема и в промежутке [latex]\left [ b,a \right ][/latex], причем

$$\underset{a}{\overset{b}{\int}}f(x)dx=-\underset{b}{\overset{a}{\int}}f(x)dx$$

Пример

Вычислить определённый интеграл [latex]\underset{4}{\overset{-2}{\int}}(8+2x-x^{2})dx[/latex].

Преобразуем интеграл и затем применим свойство линейности интеграла.

$\underset{4}{\overset{-2}{\int}}(8+2x-x^{2})dx=\underset{-2}{\overset{4}{\int}}(8+2x-x^{2})dx=8\underset{-2}{\overset{4}{\int}}dx+2\underset{-2}{\overset{4}{\int}}xdx-\underset{-2}{\overset{4}{\int}}x^{2}dx=$$=8x|_{-2}^{4}+2\cdot \frac{1}{2}(x^{2})|_{-2}^{4}-\frac{1}{3}(x^{3})|_{-2}^{4}=48+12-24=36$.

Свойство 1

Если функция [latex]f(x)[/latex] интегрируема на отрезке [latex]\left [ a,b \right ][/latex], то она интегрируема на произвольном отрезке [latex]\left [ \alpha,\beta \right ] \subset \left [ a,b \right ][/latex].

Спойлер

Рассмотрим произвольное разбиение [latex]\tau _{\left [ \alpha ,\beta \right ]}=\left \{ x_{k} \right \}_{k=0}^{n}[/latex] отрезка [latex]\left [ \alpha,\beta \right ][/latex].  Добавив к нему [latex]\left [ a,\alpha \right ][/latex] и [latex]\left [ \beta,b \right ][/latex], мы получим разбиение  [latex]\tau _{\left [ a ,b \right ]}[/latex] отрезка  [latex]\left [ a,b \right ][/latex]. По условию интегрируемости [latex]f(x)[/latex] получим :

$$0\leq \sum_{x_{k}\in \tau_{\left [ \alpha ,\beta \right ]}}^{n}\omega _{k}\Delta x_{k}\leq \sum_{x_{k}\in \tau \left [ a ,b \right ]}\omega _{k}\Delta x_{k}\rightarrow 0$$,

когда диаметр разбиения [latex] \tau_{\left [ \alpha ,\beta \right ]}[/latex] стремится к нулю. Этот факт и доказывает наше свойство.

[свернуть]

Пример

 Ранее мы уже показали, что функция $f(x)=8+2x-x^{2}$ интегрируема на отрезке [latex]\left [ -2, 4 \right ][/latex]. Согласно первому свойству она также интегрируема на промежутке [latex]\left [ 0,2 \right ][/latex].

$\underset{0}{\overset{2}{\int}}(8+2x-x^{2})dx=8\underset{0}{\overset{2}{\int}}dx+2\underset{0}{\overset{2}{\int}}xdx-\underset{0}{\overset{2}{\int}}x^{2}dx=$$=8x|_{0}^{2}+2\cdot \frac{1}{2}(x^{2})|_{0}^{2}-\frac{1}{3}(x^{3})|_{0}^{2}=\frac{52}{3}$

 

Свойство 2 (аддитивность интеграла)

Если функция [latex]f(x)[/latex] интегрируема на отрезках  [latex]\left [ a,c \right ][/latex] и [latex]\left [ c,b \right ][/latex], то она также интегрируема на отрезке [latex]\left [ a,b \right ][/latex] и имеет место равенство

$$\underset{a}{\overset{b}{\int}}f(x)dx=\underset{a}{\overset{c}{\int}}f(x)dx+\underset{c}{\overset{b}{\int}}f(x)dx$$.

Спойлер

Пусть функция интегрируема в промежутке [latex]\left [ a,b \right ][/latex]. Интегрируемость функции в промежутках [latex]\left [ a,c \right ][/latex] и [latex]\left [ c,b \right ][/latex], следует из Свойства 1. Рассмотрим разбиение промежутка  [latex]\left [ a,b \right ][/latex] на части [latex]\tau _{\left [ \alpha ,\beta \right ]}=\left \{ x_{k} \right \}_{k=0}^{n}[/latex], причем точку  [latex]c[/latex] будем считать одной из точек деления. Составив интегральную сумму, будем иметь

$$\sum_{a}^{b}f(\xi )\Delta x=\sum_{a}^{c}f(\xi )\Delta x + \sum_{c}^{b}f(\xi )\Delta x$$

Каждая из этих сумм имеет предел, который равен соответствующему  интегралу для любых точек

$$\xi _{k}\in \left [ x_{k},x_{k-1} \right ],(k=1,2,\dots,n)$$,

когда диаметр разбиения стремится к нулю. Т.е.

$$\underset{a}{\overset{b}{\int}}f(x)dx=\underset{a}{\overset{c}{\int}}f(x)dx+\underset{c}{\overset{b}{\int}}f(x)dx$$

 

[свернуть]

Пример

Снова возьмём функцию $f(x)=8+2x-x^{2}$ и рассмотрим значения интеграла на промежутках [latex]\left [ -2, 1 \right ][/latex] и [latex]\left [ 1, 4 \right ][/latex].

$\underset{-2}{\overset{1}{\int}}(8+2x-x^{2})dx=8\underset{-2}{\overset{1}{\int}}dx+2\underset{-2}{\overset{1}{\int}}xdx-\underset{-2}{\overset{1}{\int}}x^{2}dx=$$=8x|_{-2}^{1}+2\cdot \frac{1}{2}(x^{2})|_{-2}^{1}-\frac{1}{3}(x^{3})|_{-2}^{1}=18$

$\underset{1}{\overset{4}{\int}}(8+2x-x^{2})dx=8\underset{1}{\overset{4}{\int}}dx+2\underset{1}{\overset{4}{\int}}xdx-\underset{1}{\overset{4}{\int}}x^{2}dx=$$=8x|_{1}^{4}+2\cdot \frac{1}{2}(x^{2})|_{1}^{4}-\frac{1}{3}(x^{3})|_{1}^{4}=18$

Т.е. $$\underset{a}{\overset{b}{\int}}f(x)dx=\underset{a}{\overset{c}{\int}}f(x)dx+\underset{c}{\overset{b}{\int}}f(x)dx$$.

Литература

Свойства определенного интеграла, связанные с отрезками интегрирования

Начало теста