Вычисление радиуса сходимости. Формула Коши — Адамара

Пусть дан степенной ряд вида $\sum\limits_{n=0}^{\infty}c_{n}z^n$ с радиусом сходимости $R$, где $c_n$,$z^{n}\in \mathbb{C}$. Тогда для этого ряда справедлива следующая теорема:

Теорема о вычислении радиуса сходимости степенного ряда

  1. Если существует конечный или бесконечный предел$\lim\limits_{n\to\infty}\sqrt[n]{\left | c_n \right |}$, то $$\frac{1}{R}=\lim\limits_{n\to\infty}\sqrt[n]{\left | c_n \right |}. (1)$$
  2. Если существует конечный или бесконечный предел $\lim\limits_{n \to\infty} \left | \frac{c_{n}}{c_{n+1}} \right |$, то $$R=\lim\limits_{n \to\infty} \left | \frac{c_{n}}{c_{n+1}} \right | .(2)$$

Доказательство:

  1. Докажем формулу (1). Пусть $\lim\limits_{n\to\infty}\sqrt[n]{\left | c_n \right |} = \rho$.
    • Если $0<\rho<+\infty$, и $z_0$ — произвольная точка из круга $K=\left \{z:\left |z\right | < \frac{1}{\rho}\right \}$, то $$\lim\limits_{n\to\infty}\sqrt[n]{\left | c_{n} \cdot z_{0}^{n} \right |} = \left | z_{0} \right | \cdot \lim\limits_{n\to\infty}\sqrt[n]{\left |c_{n} \right |} = \left |z_{0} \right | \cdot \rho < 1.$$ По признаку Коши сходимости ряда, ряд сходится в точке $z_{0}$. В силу того, что точка $z_{0}$ — произвольная точка круга $K$, исходный ряд сходится в $K$.
      Предположим, что точка $z_{m}$ не принадлежит кругу $K$, то есть $\left |z_{m} \right | > \frac{1}{\rho}$.Тогда $$\lim\limits_{n\to\infty}\sqrt[n]{\left | c_{n} \cdot z_{m}^{n} \right |} = \left | z_{m} \right | \cdot \lim\limits_{n\to\infty}\sqrt[n]{\left |c_{n} \right |} = \left |z_{m} \right | \cdot \rho > 1.$$ По признаку Коши, ряд расходится.
      Значит, ряд сходится в круге $K$, и расходится вне его замыкания. Это значит, что $\frac{1}{\rho}$ — радиус сходимости исходного ряда.
      Круг сходимости $K$ c нанесенными точками $z_{0}$ и $z_{m}$

      radius

      [свернуть]
    • Если $\rho = 0$, то $\forall z \in \mathbb{C}$ выполняется следующее: $$\lim\limits_{n\to\infty}\sqrt[n]{\left | c_{n} \cdot z^{n} \right |} = \left | z \right | \cdot \rho = 0 .$$ По признаку Коши ряд сходится в точке $z$. В силу произвольности точки $z$ ряд сходится на всей комплексной плоскости. И это значит, что радиус сходимости ряда $R=+\infty$.
    • Пусть $\rho = +\infty$. Тогда $\forall z \neq 0$ $$\lim\limits_{n\to\infty}\sqrt[n]{\left | c_{n} \cdot z^{n} \right |} = \left | z \right | \cdot \rho = +\infty. $$ По признаку Коши, ряд расходится в точке $z$. Отсюда выходит, что радиус сходимости $R = 0$.
  2. Доказательство (2) по сути идентично доказательству (1). Различие в том, что будет использоваться признак Даламбера сходимости ряда. Для этого выполним следующие преобразования: $$ R=\lim\limits_{n \to\infty} \left | \frac{c_{n}}{c_{n+1}} \right | = \frac{\lim\limits_{n \to \infty}\left | c_{n} \right |}{\lim\limits_{n \to \infty}\left | c_{n+1} \right |} = \frac{1}{(\frac{\lim\limits_{n \to \infty}\left | c_{n+1} \right |}{\lim\limits_{n \to \infty}\left | c_{n} \right |})} = \frac{1}{\lim\limits_{n \to\infty} \left | \frac{c_{n+1}}{c_{n}} \right |}.$$
    Пусть $\lim\limits_{n \to \infty}\left | \frac{c_{n+1}}{c_{n}} \right | = \rho$

    • Если $0<\rho<+\infty$, и $z_0$ — произвольная точка из круга $K=\left \{z:\left |z\right | < \frac{1}{\rho}\right \}$, то $z_0$ так же по модулю меньше, чем $\frac{1}{\rho}$. Отсюда следует, что $$\lim\limits_{n \to \infty}\left | \frac{c_{n+1} \cdot z_{0}^{n+1}}{c_{n} \cdot z_{0}^{n}}\right |=\left | z \right | \cdot \lim\limits_{n \to \infty}\left | \frac{c_{n+1}}{c_{n}}\right |=\left |z \right | \cdot \rho < 1.$$ По признаку Даламбера сходимости ряда, ряд сходится в точке $z_{0}$. В силу того, что точка $z_{0}$ — произвольная точка круга $K$, исходный ряд сходится в $K$.
      Предположим, что точка $z_{m}$ не принадлежит замыканию круга $K$, то есть $\left |z_{m} \right | > \frac{1}{\rho}$. Тогда $$\lim\limits_{n \to \infty}\left | \frac{c_{n+1} \cdot z_{0}^{n+1}}{c_{n} \cdot z_{0}^{n}}\right |=\left | z \right | \cdot \lim\limits_{n \to \infty}\left | \frac{c_{n+1}}{c_{n}}\right |=\left |z \right | \cdot \rho > 1.$$ По признаку Даламбера, ряд расходится.
      Значит, ряд сходится в круге $K$, и расходится вне него. А это значит, что $\frac{1}{\rho}$ — радиус сходимости исходного ряда.
    • Пусть $\rho = 0$, то $\forall z \in \mathbb{C}$ выполняется следующее:$$\lim\limits_{n \to \infty}\left | \frac{c_{n+1} \cdot z_{0}^{n+1}}{c_{n} \cdot z_{0}^{n}}\right |=\left |z \right | \cdot \rho = 0. $$ По признаку Даламбера, ряд сходится в точке $z$. В силу произвольности $z$ ряд сходится на всей комплексной плоскости. И это значит, что радиус сходимости ряда $R=+\infty$.
    • Пусть $\rho = +\infty$. Тогда $\forall z \neq 0$ $$\lim\limits_{n \to \infty}\left | \frac{c_{n+1} \cdot z_{0}^{n+1}}{c_{n} \cdot z_{0}^{n}}\right |=\left |z \right | \cdot \rho = +\infty. $$ По признаку Даламбера, ряд расходится в точке $z$. Отсюда выходит, что радиус сходимости $R = 0$.
Пример 1

Условие:

Найти радиус сходимости ряда
$$\sum\limits_{n=1}^{\infty}\frac{x^{n}}{3^{n} \cdot (n+1)}.$$

Решение:

$$R = \lim\limits_{n \to\infty} \left | \frac{c_{n}}{c_{n+1}} \right | = \lim\limits_{n \to\infty}\frac{3^{n+1}\cdot ((n+1)+1)}{3^{n} \cdot (n+1)} =$$ $$= \lim\limits_{n \to\infty} \frac{3 \cdot (n+2)}{n+1} = 3 \cdot \lim\limits_{n \to\infty} \frac{n+2}{n+1} = 3.$$

[свернуть]

Пример 2

Условие:

Найти радиус сходимости степенного ряда
$$\sum\limits_{n=0}^{\infty}\frac{\sqrt{2}^{n} \cdot z^{n}}{n \cdot 12^{n}}.$$

Решение:

$$\frac{1}{R} = \lim\limits_{n\to\infty}\sqrt[n]{\left | c_n \right |} = \lim\limits_{n\to\infty}\sqrt[n]\frac{\sqrt{2}^{n} }{n \cdot 12^{n}} = \frac{\sqrt{2}}{12} \cdot \lim\limits_{n\to\infty}\frac{1}{\sqrt[n]{n}} = \frac{\sqrt{2}}{12}. $$ Отсюда следует, что $$R = \frac{12}{\sqrt{2}}=6 \cdot \sqrt{2}.$$

[свернуть]

Замечание

Пределы в формулах (1) и (2) могут не существовать. Однако существует универсальная формула для вычисления радиуса сходимости.

Теорема

Радиус сходимости$R$ степенного ряда $\sum\limits_{n=0}^{\infty}c_{n}z^n$ высчитывается по формуле:
$$R = \frac{1}{\varlimsup\limits_{n \to \infty}\sqrt[n]{\left | c_{n} \right |}},$$
где $\frac{1}{0}=+\infty$ и $\frac{1}{+\infty}=0.$

Доказательство

Доказательство данной теоремы основано на применении обобщенного признака Коши: $$\varlimsup\limits_{n \to \infty}\sqrt[n]{\left | c_{n} \cdot z^{n} \right |} = \left | z \right | \cdot \varlimsup\limits_{n \to \infty}\sqrt[n]{\left |c_{n} \right |}. $$
Предположим, что ряд сходится в точке $z_{0}$, тогда из обобщенного признака Коши сходимости числового ряда с неотрицательными членами следует, что $\left | z_{0} \right | \cdot \varlimsup\limits_{n \to \infty}\sqrt[n]{\left |c_{n} \right |}<1$. Отсюда получаем, что $$\left | z_{0} \right | < \frac{1}{\varlimsup\limits_{n \to \infty}\sqrt[n]{\left | c_{n} \right |}}.$$
Пусть ряд расходится в точке $z_{m}$. Тогда $\left | z_{m} \right | \cdot \varlimsup\limits_{n \to \infty}\sqrt[n]{\left |c_{n} \right |}>1$. Отсюда $$\left | z_{m} \right | > \frac{1}{\varlimsup\limits_{n \to \infty}\sqrt[n]{\left | c_{n} \right |}}.$$
То есть, если $z$ по модулю меньше чем $\frac{1}{\varlimsup\limits_{n \to \infty}\sqrt[n]{\left | c_{n} \right |}}$, то ряд сходится в данной точке, а если $z$ по модулю больше, то ряд в данной точке расходится. Из определения радиуса сходимости следует, что
$$R=\frac{1}{\varlimsup\limits_{n \to \infty}\sqrt[n]{\left | c_{n} \right |}}.$$

Список использованной литературы:

Вычисление радиуса сходимости, формула Коши-Адамара

Тест по материалу данной статьи


Таблица лучших: Вычисление радиуса сходимости, формула Коши-Адамара

максимум из 7 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Коэффициенты Тейлора, ряд Тейлора

Определение

Если функция $f$ определена в некоторой окрестности точки $x_{0}$ и является бесконечно дифференцируемой (имеет в данной точке производные всех порядков), то степенной ряд вида $$\sum\limits_{n=0}^{\infty}a_{n}\left(x-x_{0}\right)^n$$ называется рядом Тейлора функции $f$ в окрестности точки $x_{0}$, где числа $$a_{n}=\frac{{f}^{\left(n \right)}\left(x_{0} \right)}{n!} \;\;\; \left(n=0,1,2,\ldots \right)$$ это коэффициенты Тейлора функции $f$ в окрестности точки $x_{0}$.

Спойлер

Представим в виде ряда Тейлора функцию $$f\left(x \right)=\begin{cases}&e^{\frac{-1}{x^{2}}},\;\;x\neq0\\&0,\;\;x=0\end{cases}$$

Найдем производные функции вне нуля: $${f}^{\left(1\right)}\left(x \right)=e^{\frac{-1}{x^{2}}}\cdot \frac{2}{x^{3}},$$ $${f}^{\left(2\right)}\left(x \right)=\left(\frac{4}{x^{6}}-\frac{6}{x^{4}} \right)e^{\frac{-1}{x^{2}}},$$ $$\ldots$$ $${f}^{\left(k\right)}\left(x\right)=e^{\frac{-1}{x^{2}}}Q_{3k}\left(\frac{1}{x}\right).$$

Рассмотрим производные функции в нуле. Докажем по индукции, что $${f}^{\left(k\right)}\left(0 \right)=0 \;\;\; \forall k \in N.$$ Имеем,

  1. ${f}^{\left(1\right)}\left(0 \right)=\lim\limits_{ n \to 0}\frac{e^{\frac{-1}{x^{2}}}}{x}=0.$
  2. ${f}^{\left(n\right)}\left(0 \right)=0 \;\;\; \forall n \in N.$
  3. ${f}^{\left(n+1\right)}\left(0 \right)=$$\lim\limits_{ n \to 0}\frac{{f}^{n}\left(x \right)-{f}^{n}\left(0 \right)}{x}=$$\lim\limits_{ n \to 0}\frac{1}{x}e^{\frac{-1}{x^{2}}}Q_{3k}\left(\frac{1}{x} \right)=$$0.$

Следовательно, для данной функции коэффициенты формулы Тейлора в точке $x_{0}$ равны нулю. Но, с другой стороны, $f\left(x \right)=e^{\frac{-1}{x^{2}}}\neq0,\;\;\; x\neq0$. Таким образом, функция не представима в виде своего ряда Тейлора.

[свернуть]

Сходимость ряда Тейлора к функции

Пусть функция $f\left(x\right)$ бесконечно дифференцируема в точке $x_{0}$. Поставим ей в соответствие формулу Тейлора: $$f\left(x\right)=\sum\limits_{n=0}^{n}\frac{{f}^{\left(n\right)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+r_{n}\left(x\right),$$ где $r_{n}\left(x \right)$ — остаток в формуле Тейлора. Обозначим, $$S_{n}\left(x\right)=\sum\limits_{n=0}^{n}\frac{{f}^{\left(n \right)}\left(x_{0} \right)}{n!}\left(x-x_{0}\right)^{n},$$ где $S_{n}\left(x\right)$— частичная сумма данного ряда Тейлора данной функции. Следовательно, можем записать равенство: $$f\left(x \right)=S_{n}\left(x \right)+r_{n}\left(x \right).$$ Тогда для того, чтобы $\lim\limits_{ n \to \infty}s_{n}\left(x \right)=f\left(x\right)$, функция $f\left(x\right)$ на заданном интервале должна быть равной сумме своего ряда Тейлора.

Таким образом, для сходимости ряда Тейлора функции $f\left(x\right)$ к функции $f\left(x\right)$ на некотором интервале необходимо и достаточно , чтобы для всех $x$ из этого интервала ее остаточный член в формуле Тейлора стремился к нулю: $$\lim\limits_{ n \to \infty}r_{n}\left(x \right)=0. $$

Литература

Коэффициенты Тейлора

Предлагаю пройти Вам данный тест на закрепление материала по данной статье.


Таблица лучших: Коэффициенты Тейлора

максимум из 3 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Первая теорема Абеля

Теорема

Если степенной ряд $$\sum\limits_{n=0}^{\infty}a_{n}z^{n}$$ сходится при $z=z_0\neq0$, то он сходится, и притом абсолютно, при любом $z$, для которого $\left|z\right|<\left|z_{0}\right|$.

abel

Доказательство

По условию ряд $\sum\limits_{n=0}^{\infty}a_{n}z^{n}$ сходится при $z=z_{0}$. Обозначим:
$$K=\left\{z:\left|z\right|<\left|z_{0}\right|\right\}.$$

Положим, что $\rho=\frac{\left|z \right|}{\left|z_{0} \right|}$. Причем так как $\left|z \right|<\left|z_{0} \right|$, то $\rho<1$.

Из сходимости ряда $\sum\limits_{n=0}^{\infty}a_{n}z^{n}$ в точке $z_{0}$ следует сходимость числового ряда вида $\sum\limits_{n=0}^{\infty}a_{n}z_{0}^{n}$. Следовательно, выполняется необходимое условие сходимости ряда, а именно: $$\lim\limits_{ n \to 0}a_{n}z_{0}^{n}=0.$$

Тогда последовательность $\left\{a_{n}z_{0}^{n}\right\}$ ограничена, т.е. $$\exists M>0\; \forall n:\left|a_{n}z_{0}^{n}\right|< M.$$

Имеем следующее: $\left|a_{n}z^{n}\right|=$$\left|a_{n}z^{n}\right|\cdot \left|\frac{z_{0}^{n}}{z_{0}^{n}}\right|=$$\left|a_{n}z_{0}^{n}\cdot\frac{z^{n}}{z_{0}^{n}}\right|=$$\left|a_{n}z_{0}^{n}\right|\cdot\left|\frac{z^{n}}{z_{0}^{n}}\right|=$$\left|a_{n}z_{0}^{n}\right|\rho^{n} < M\rho^{n}. $

Рассмотрим ряд $\sum\limits_{n=0}^{\infty}M\rho^{n}$. Так как мы знаем, что $0\leq\rho<1$, то, в силу необходимого условия сходимости ряда, данный ряд сходится.

Тогда, по признаку сравнения в форме неравенств, ряд $\sum\limits_{n=0}^{\infty}a_{n}z^{n}$ сходится абсолютно для $\forall z \in K$.

Следствие 1

Если степенной ряд $$\sum\limits_{n=0}^{\infty}a_{n}z^{n}$$ расходится при $z=z_{0}\neq0$, то он расходится при любом $z$, для которого $\left|z\right|>\left|z_{0}\right|$.
sledab

Спойлер

Докажем от противного. Пусть ряд $\sum\limits_{n=0}^{\infty}a_{n}z^{n}_0$ расходится, а ряд $\sum\limits_{n=0}^{\infty}a_{n}z^{n}$ сходится. В этом случае, по теореме Абеля, сходится и ряд $\sum\limits_{n=0}^{\infty}a_{n}z_{0}^{n}$. Пришли к противоречию.

[свернуть]

Следствие 2

Если степенной ряд $\sum\limits_{n=0}^{\infty}a_{n}z^{n}$ сходится в точке $z_{0}\neq0$, то в замкнутом круге $K_1=\left\{z:\left|z\right|\leq \vartheta\right\}$, где $\vartheta<\left|z_{0}\right|$ этот ряд сходится абсолютно и равномерно.

Спойлер

Если $z \in K_1$, то $\left|a_{n}z^{n}\right|=$$\left|a_{n}z^{n}\right|\cdot \left|\frac{z_{0}^{n}}{z_{0}^{n}}\right|=$$\left|a_{n}z_{0}^{n}\cdot\frac{z^{n}}{z_{0}^{n}}\right|=$$\left|a_{n}z_{0}^{n}\right|\cdot\left|\frac{z^{n}}{z_{0}^{n}}\right|\leq M\cdot {\left(\frac{\vartheta}{z_{0}}\right)}^{n},$ так как известно, что: $\left|a_{n}z_{0}^{n}\right|<M$, а $\left|z\right|<\vartheta.$

Положим, $p=\frac{\vartheta}{z_{0}}$, причем $0\leq p<1$.

Ряд $\sum\limits_{n=0}^{\infty}Mp^{n}$ сходится. Следовательно, по признаку Вейерштрасса ряд $\sum\limits_{n=0}^{\infty}a_{n}z^{n}$ сходится абсолютно и равномерно в круге $K_{1}$.

[свернуть]

Литература

Теорема Абеля

Тест на закрепление вышеизложенного материала.


Таблица лучших: Теорема Абеля

максимум из 2 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Почленное дифференцирование и интегрирование степенного ряда

Часть первая: Почленное интегрирование степенного ряда

Замечание

Радиусом сходимости степенного ряда [latex]\sum_{n=0}^{\infty}{a_nx^n}[/latex] называется такое число [latex]R[/latex] при котором ряд сходится при [latex]|x|<R[/latex] и расходится при [latex]|x|>R[/latex].
сх

Теорема

Степенной ряд [latex]\sum_{n=0}^{\infty}{a}_{n}{x}^{n}={a}_{0}+{a}_{1}{x}+{a}_{2}{x}^{2}+…+{a}_{n}{x}^{n}+…[/latex] (в дальнейшем ряд 1), на промежутке [latex][0, x][/latex], где [latex]\left|x\right|<R[/latex], всегда можно интегрировать почленно, так что $$\int_{0}^{x}f(x)dx={a}_{0}x+\frac{{a}_{1}}{2}{x}^{2}+\frac{{a}_{2}}{3}{x}^{3}+\ldots+\frac{{a}_{n-1}}{n}{x}^{n}+\ldots$$

Доказательство

Спойлер

Для доказательства выберем [latex]r[/latex] между [latex]\left|x\right|[/latex] и [latex]R[/latex]. Так как степенной ряд равномерно сходится, ряд [latex](1)[/latex] сходится равномерно на промежутке [latex][-r, r][/latex] , и следовательно по теореме (об интегрируемости функционального ряда на сегменте) на промежутке [latex][0, x][/latex] ряд можно почленно интегрировать.

[свернуть]

Пример

Спойлер

1) Почленно интегрируем прогрессии:
$$\frac{1}{1+x}=1-x+{x}^{2}-\ldots+{(-1)}^{n-1}{x}^{n-1}+\ldots$$
$$\frac{1}{1+{x}^{2}}=1-{x}^{2}+{x}^{4}-\ldots+{(-1)}^{n-1}{x}^{2(n-1)}+\ldots$$

получаются такие разложения:

$$\int_{0}^{x}\frac{dx}{1+x}=\int_{0}^{x}1-\int_{0}^{x}x+\int_{0}^{x}{x}^{2}-\ldots+\int_{0}^{x}{(-1)}^{n-1}{x}^{n-1}+\ldots=$$
$$x-\frac{x^2}{2}+\frac{x^3}{3}-\ldots+(-1)^{n-1}\frac{x^n}{n}+\ldots$$

$$\int_{0}^{x}\frac{dx}{1+{x}^{2}}=\int_{0}^{x}1-\int_{0}^{x}{x}^{2}+\int_{0}^{x}{x}^{4}-\ldots+\int_{0}^{x}{(-1)}^{n-1}{x}^{2(n-1)}+\ldots=$$
$$x-\frac{x^3}{3}+\frac{x^5}{5}-\ldots+(-1)^{n-1}\frac{x^{2n-1}}{2n-1}$$

2) Возьмем известное нам разложение в ряд функции [latex](1+x)^{-\frac{1}{2}}[/latex] и заменим в нем [latex]x[/latex] на [latex]-x^2[/latex] (считая что [latex]|x|<1[/latex]); в результате получим:$$\frac{1}{\sqrt{1-x^2}}=1+\sum_{n=1}^{\infty }{\frac{(2n-1)!!}{2n!!}}x^{2n}(-1<x<1)$$.

Теперь проинтегрируем полученный ряд почленно на промежутке [latex][0, x][/latex] [latex](-1<x<1)[/latex]:$$\int_{0}^{x}{\frac{dx}{\sqrt{1-x^2}}}=arcsinx=x+\frac{1}{2}\cdot\frac{x^3}{3}+\frac{1\cdot3}{2\cdot4}\cdot\frac{x^5}{5}+\ldots+\frac{1\cdot3\cdot\ldots\cdot(2n-1)}{2\cdot4\cdot\ldots\cdot2n}\cdot\frac{x^{2n+1}}{2n+1}+\ldots$$

По следствию из теоремы Абеля это разложение имеет место и на концах [latex]x=\pm1[/latex], т. к. ряд справа сходиться в этих точках.

[свернуть]

Почленное интегрирование степенного ряда

Часть вторая: Почленное дифференцирование степенного ряда

Теорема

Степенной ряд (1) внутри его промежутка сходимости можно дифференцировать почленно, так что для суммы ряда [latex]f(x)[/latex] существует производная которая выражается:$$f^\prime(x)=\sum_{n=1}^{\infty}{na_nx^{(n-1)}}=a_1+2a_2x+\ldots+na_nx^{(n-1)}+\ldots$$

Доказательство

Спойлер

Возьмем любое [latex]x[/latex] внутри промежутка сходимости исходного ряда, так что [latex]|x|<R[/latex], и вставим число [latex]r^\prime[/latex] между [latex]|x|[/latex] и [latex]R[/latex]:[latex]|x|<r^\prime<R[/latex].
Ввиду сходимости ряда $$\sum_{n=1}^{\infty}{a_n r^{\prime n}}=a_0+a_1 r^\prime+a_2 r^{\prime 2}+\ldots+a_n r^{\prime n}+\ldots ,$$

его общий член ограничен:$$|a_n|r^{\prime n}<L\;\;\;(L=const;n=1,2,3,\ldots)$$
Тогда для абсолютной величины [latex]n[/latex]-го члена ряда [latex]f^\prime(x)[/latex] получается оценка $$n\mid a_n\mid \cdot|r^{n-1}|=n\mid a_n\mid \cdot r^{\prime n}\cdot {|\frac{x}{r^\prime}|}^{n-1}\cdot \frac{1}{r^{\prime}}\le \frac{L}{r^\prime}\cdot n{|\frac{x}{r^\prime}|}^{n-1}.$$
Ряд $$\frac{L}{r^\prime}\sum_{n=1}^{\infty}{n{|\frac{x}{r^\prime}|}^{n-1}}=\frac{L}{r^\prime}\{1+2|\frac{x}{r^\prime}|+\ldots+n{|\frac{x}{r^\prime}|}^{n-1}+\ldots\}$$сходится; в этом можно убедиться с помощью признака Даламбера, если учесть что [latex]|\frac{x}{r^{\prime}}|<1.[/latex]В этом случае абсолютно сходится ряд [latex]f^\prime(x).[/latex] Отсюда ясно что радиус сходимости [latex]R^\prime[/latex] ряда [latex]f^\prime(x)[/latex] не меньше [latex]R.[/latex]
Если теперь взять любое [latex]r<R[/latex], то одновременно [latex]r<R^\prime[/latex]; так как степенной ряд (1) равномерно сходится то и ряд [latex]f^\prime(x)[/latex] равномерно сходится в промежутке [latex][-r, r],[/latex] так что — по теореме о почленном дифференцировании рядов — в этом промежутке допустимо почленное дифференцирование ряда (1). Так как [latex]r<R[/latex] произвольно, то основное утверждение теоремы доказано.

[свернуть]

Замечание

Мы доказали что ряд [latex]\int_{0}^{x}f(x)dx={a}_{0}x+\frac{{a}_{1}}{2}{x}^{2}+\frac{{a}_{2}}{3}{x}^{3}+…+\frac{{a}_{n-1}}{n}{x}^{n}+…[/latex] и [latex]f^\prime(x)=\sum_{n=1}^{\infty}{na_nx^{n-1}}=a_1+2a_2x+\ldots+na_nx^{(n-1)}+\ldots[/latex] сходятся на промежутке [latex](-R, R)[/latex], следовательно их радиусы сходимости не меньше [latex]R[/latex]. В свою очередь ряд (1) получается почленным дифференцированием ряда [latex]\int_{0}^{x}f(x)dx={a}_{0}x+\frac{{a}_{1}}{2}{x}^{2}+\frac{{a}_{2}}{3}{x}^{3}+…+\frac{{a}_{n-1}}{n}{x}^{n}+…[/latex] и почленным интегрированием ряда [latex]f^\prime(x)=\sum_{n=1}^{\infty}{na_nx^{n-1}}=a_1+2a_2x+\ldots+na_nx^{(n-1)}+\ldots[/latex] следовательно [latex]R[/latex] не может быть меньше упомянутых радиусов сходимости. Из вышеупомянутого следует, что радиусы сходимости всех трех рядов равны между собой.

Пример

Спойлер

1) Разложить в степенной ряд функцию [latex]e^x[/latex]

Рассмотрим ряд [latex]f(x)=\sum_{n=0}^{\infty}{\frac{x^n}{n!}}=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\ldots[/latex].

Ряд сходится при любых [latex]x[/latex]. Почленно дифференцируя ряд получим:$$f^\prime(x)=\frac{d}{dx}1+\frac{d}{dx}x+\frac{d}{dx}\frac{x^2}{2!}+\frac{d}{dx}\frac{x^3}{3!}+\ldots=0+1+x+\frac{x^2}{2!}+\ldots=f(x)$$

Заметим что функция [latex]f(x)[/latex] удовлетворяет дифференциальному уравнению [latex]f^\prime=f[/latex]. Общее решение этого уравнения имеет вид [latex]f(x)=ce^x[/latex], где [latex]c[/latex] — константа. Подставляя начальное значение [latex]f(0)=1[/latex], получим [latex]c=1[/latex]. Таким образом получим разложение:$$f(x)=e^x=\sum_{n=0}^{\infty}{\frac{x^n}{n!}}=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\ldots$$

[свернуть]

Список литературы

Почленное дифференцирование степенного ряда