16.1 Равномерная сходимость

Определение. Пусть на множестве $E$ задана последовательность функций $f_{n}\left(n=1,2…\right)$, сходящаяся на $E$ поточечно к функции $f$. Говорят, что последовательность {$f_{n}$} сходится равномерно к функции $f$ на множестве $E$, если для любого $\varepsilon > 0$ найдется такой номер $N$, зависящий только от $\varepsilon$ (и не зависящий от $x$), что для каждого $n \geq N$ справедливо неравенство $\mid f_{n}\left(x\right)- f\left(x\right)\mid < \varepsilon$.

Определение поточечной сходимости на множестве $E$ в кванторах можно записать следующим образом:
$$ \forall x \in E \; \forall\varepsilon > 0 \; \exists N = N\left(\varepsilon,x\right) : \forall n \geq N \mid f_{n}\left(x\right)- f\left(x\right)\mid < \varepsilon, $$ а равномерной сходимости — так: $$ \forall \varepsilon > 0 \; \exists N = N\left(\varepsilon\right) : \forall n \geq N \; \forall x \in E \mid f_{n}\left(x\right)- f\left(x\right)\mid < \varepsilon.$$ В определении поточечной сходимости номер $N$ зависит, вообще говоря, от $\varepsilon$ и от $x$, а в определении равномерной сходимости $N$ зависит только от $\varepsilon$ и не зависит от $x$. Иначе говоря, поточечная сходимость будет равномерной, если для заданного $\varepsilon > 0 $ номер $N$ можно подобрать так, чтобы он был пригоден сразу для всех $x \in E$.

Теперь видно, что свойство равномерной сходимости не слабее, чем свойство поточечной сходимости, т. е. из равномерной сходимости следует поточечная сходимость. Обратное неверно. Может оказаться, что для каждого $\varepsilon > 0$ и для $x \in E$ найдется номер $N = N \left(\varepsilon,x\right)$, но для всех сразу $x \in E$ номер $N$, не зависящий от $x$, может и не существовать. Приведем

Пример 1. Пусть $f_{n}(x) = x^{n} (x \in E \equiv \left[0,1\right])$. Мы уже видели, что $$f(x) = \lim_{n\to\infty} f_{n}(x) = \begin{cases}0, & 0\leq x < 1, \\1, & x = 1.\end{cases}$$ Если бы последовательность {$x^{n}$} сходилась к функции $f$ равномерно, то неравенство $\mid x^{n} — f(x)\mid < \varepsilon$ при достаточно больших $n \; (n\geq N(\varepsilon))$ должно было быть выполненным сразу для всех $x \in E$. Но это не так, поскольку при фиксированном $n$ имеем $\lim_{x\to1-0} x^{n} = 1 $, так что в любой левой полуокрестности точки $x_{0}=1$ найдется такая точка $x_{1} \frac{1}{2}$. Поэтому если мы возьмем $\varepsilon_{0} > \frac{1}{2}$, то получим неравенство $\mid x_1^n — 0\mid\geq \varepsilon_{0} $. Окончательно имеем $$\exists \varepsilon_{0} (\varepsilon_{0} = \frac{1}{2}) : \forall N \; \exists n \geq N (n = N) \; \exists x_{1} =$$ $$= x_{1}(\varepsilon, n) \in E : \mid f_{n}(x_{1}) — f(x_{1})\mid \geq \varepsilon_{0}$$ Это означает, что данная последовательность не является равномерно сходящейся на множестве $E$.

В этом примере «плохие» точки $x_{1}$, т.е. такие, в которых выполнено неравенство $\mid f_{n}(x_{1}) — f(x_{1})\mid \geq \varepsilon_{0}$, находится вблизи точки $x_{0}=1$. Если же мы отделимся от $x_{0}$, т.е. рассмотрим последовательность ${x^{n}}$ на множестве $E_{\delta}=\left[0,1 — \delta\right]$, где $\delta > 0$ — произвольное число, то сходимость данной последовательности к функции $f(x)\equiv0$ на множестве $E_{\delta}$ уже будет равномерной. Действительно, в этом случае $$\mid f_{n}(x) — f(x) \mid = x^{n} \leq (1 — \delta)^{n} < \varepsilon \; \; \; (0\leq x \leq 1-\delta), $$ если только $n \geq N(\varepsilon), $ где $N(\varepsilon) = \left[\frac{\ln \varepsilon}{\ln (1-\delta)}\right] + 1 $ не зависит от $x \in E_{\delta}$.

Пример 2. Для последовательности функций $f_{n}(x) = \frac{nx}{1+n^{2}x^{2}} \; \; (x \in E\equiv \mathbb{R})$ ранее мы показали, что $$f(x) = \lim_{x\to\infty} \frac{nx}{1+n^{2}x^{2}} = 0 \; \; \; (x \in \mathbb{R}).$$ Поэтому $\mid f_{n}(x) — f(x)\mid \rightarrow 0 \; \; \; (n \rightarrow \infty )$ при каждом фиксированном $x \in \mathbb{R}$. Однако при фиксированном $n$ наибольшее значение функция $f_{n}(x) = \frac{nx}{1+n^{2}x^{2}}$ достигает в точке $x_{n} = \frac{1}{n}$ и это значение равно $f_{n}(\frac{1}{n}) = \frac{1}{2}$. Таким образом, для $\varepsilon_{0}=\frac{1}{2}$ неравенство $\mid f_{n}(x)-f(x)\mid < \varepsilon_{0}$ не может быть выполненным сразу для всех $x \in \mathbb{R}$. Значит, последовательность {$f_{n}$} сходится к функции $f \equiv 0$ на $\mathbb{R}$, но неравномерно, т.е. $$\exists \varepsilon_{0} ( \varepsilon_{0} = \frac{1}{2}) : \forall N \; \exists n\geq N (n=N) \;
\exists x_{1} (x_{1} = \frac{1}{n}) : \mid f_{n}(x_{1}) — f(x_{1})\mid \geq \varepsilon_{0}.$$

Если же зафиксировать число $\delta > 0 $, то нетрудно показать, что на множестве $E_{\delta} = \left[\delta,+\infty\right)$ последовательность функций $f_{n}(x) = \frac{nx}{1+n^{2}x^{2}}$ сходится равномерно. Действительно, неравенство $$\mid f_{n}(x) — f(x)\mid = \frac{nx}{1+n^{2}x^{2}} \leq \frac{1}{nx} \leq \frac{1}{n\delta} < \varepsilon \; \; \; (x \in E_{\delta})$$ выполнено, если только $n \geq N(\varepsilon)$, где $ N(\varepsilon) = \left[\frac{1}{\varepsilon\delta}\right] + 1 $ не зависит от $x \in E_{\delta}$

Геометрический смысл равномерной сходимости состоит в том, что начиная с номера $N$ графики функций $f_{n}(x)$ расположены в $\varepsilon$-полосе графика функции $f$.

Равномерная сходимость ряда определяется как равномерная сходимость последовательности его частичных сумм.

Определение. Пусть на множестве $E$ задана последовательность функций $\left\{u_{n}\right\}$. Ряд $\sum_\left(n=1\right)^\infty u_{n}$ называется равномерно сходящимся на множестве $E$, если он сходится поточечно на $E$ и последовательность его частичных сумм равномерно сходится к сумме ряда на множестве $E$.

Другими словами, определение равномерной сходимости ряда $\sum_\left(n=1\right)^\infty u_{n}$, сходящегося к функции $f$ на множестве $E$, можно сформулировать следующим образом. Обозначим через $S_{n}(x) = \sum_\left(k=1\right)^n u_{k}(x)$ частичные суммы ряда $ \sum_\left(n=1\right)^\infty u_{n}(x), r_{n}(x) = \sum_\left(k = n+1\right)^\infty u_{k}(x)$ — остаток после $n$-го слагаемого. Тогда $S_{n}(x) + r_{n}(x) = f(x),$ а равномерная сходимость ряда означает, что для любого $\varepsilon > 0$ найдется такой номер $N$ (зависящий только от $\varepsilon$), что для всех $n \geq N$ и для всех $x \in E$ справедливо неравенство $\mid S_{n}(x) — f(x)\mid < \varepsilon$. Но так как $\mid S_{n}(x) — f(x)\mid = \mid r_n(x)\mid$, то получаем $$\forall \varepsilon > 0 \; \exists N : \forall n \geq N \; \forall x \in E \;\; \mid r_{n}(x)\mid < \varepsilon. $$ Это в свою очередь означает, что остаток ряда равномерно стремится к нулю. Таким образом, получили следующее эквивалентное определение равномерной сходимости ряда.

Ряд $\sum_\left(n=1\right)^\infty u_{n}(x)$ называется равномерно сходящимся на множестве $E$, если последовательность его остатков после $n$-го слагаемого {$r_{n}$} равномерно сходится к нулю на множестве $E$.

Это определение более выгодно по сравнению с предыдущим тем, что оно использует лишь слагаемые исходного ряда и не использует сумму самого ряда $f(x)=\sum_\left(n=1\right)^\infty u_{n}(x)$.

Пример 1. Ряд $\sum_\left(n=1\right)^\infty x^{n}$ сходится на интервале $(-1,1)$ т.к. он представляет собой сумму геометрической прогрессии со знаменателем $x, \mid x \mid < 1 $. Исследуем его на равномерную сходимость. Для этого рассмотрим остаток $r_{n}(x) = \sum_\left(k =n+1\right)^\infty x^{k} = \frac{x^{n+1}}{1-x}$. При фиксированном $x$ и $n \rightarrow \infty$ имеем $r_{n}(x) \rightarrow 0$. Это означает, что данный ряд сходится при каждом $x$, т.е. поточечно. Если же зафиксировать $n$ к $1-0$, то получим, что $\frac{x^{n+1}}{1-x} \rightarrow +\infty$, т.е. если $x$ близок к $1$, то $r_{n}(x)$ принимает большие значения. Это означает, что неравенство $\mid r_{n}(x)\!\!\mid \; = \frac{\mid x\mid^{n+1}}{1-x} < \varepsilon$ сразу для все $x \in (-1,1)$, но неравномерно.

С другой стороны, на любом отрезке $\left[-q,q\right]$, где $0<q<1$, ряд $\sum_\left(n=1\right)^\infty x^{n}$ сходится равномерно. Действительно, в этом случае $$\mid r_{n}(x)\!\!\mid = \; \mid\sum_\left(k=n+1\right)^\infty x^{n}\!\!\mid = \; \mid\frac{x^{n+1}}{1-x} \mid \; \leq \frac{q^{n+1}}{1-q}, \; \; \; (x \in \left[-q,q\right]).$$ Отсюда следует, что последовательность {$r_{n}(x)$} равномерно сходится к нулю на $[-q,q]$, т.е. данный ряд равномерно сходится на $[-q,q]$.

Пример 2. Рассмотрим ряд $\sum_\left(n=0\right)^\infty \frac{x^{2}}{(1+x^{2})^{n}}$. Имеем $$r_{n}(x) = \begin{cases}\frac{x^{2}}{(1+x^{2})^{n}}, & x \neq 0\\0, & x = 0.\end{cases}$$ Если $x$ фиксировано, то $r_{n}(x) \rightarrow 0$ при $n \rightarrow \infty$. Это означает, что ряд является сходящимся при любом $x \in \mathbb{R}$, т.е. он сходится поточечно. Если зафиксируем $n$, то при стремлении $x$ к нулю получаем, что $r_{n}(x) \rightarrow 1$, а это означает, что неравенство $\mid r_{n}(x)\!\! \mid \; = \frac{1}{(1+x^{2})^{n}} < \varepsilon$ при $0 <\varepsilon< 1$ не может выполняться сразу для всех $x \in \mathbb{R}$, каким бы большим номер $n$ мы ни взяли. Таким образом, $r_{n}(x)\rightarrow 0 \; (n \rightarrow \infty)$, но неравномерно. Следовательно, данный ряд сходится на $\mathbb{R}$ неравномерно.

Замечание. Пусть задан ряд $$\sum_\left(n=1\right)^\infty u_{n}(x) \; \; \; (x \in E).\qquad
(16.2)$$ Рассмотри величины $$\mu_{n}=\sup_{x\in E} \mid \sum_\left(k=n+1\right)^\infty u_{k}(x)\mid = \sup_{x\in E} \mid r_{n}(x)\mid.$$ Тогда определение равномерной сходимости ряда (16.2) на множестве $E$ можно сформулировать следующим образом.

Ряд (16.2) сходится равномерно на множестве $E$, если $\lim_{n\to\infty} \mu_{n} = 0.$

Действительно, если $\mu_{n}\rightarrow 0 \; (n \rightarrow \infty)$, то для любого $\varepsilon > 0$ найдется такой номер $N$, что для всех $n \geq N$ справедливо неравенство $\mu_{n} < \varepsilon$, т.е. для всех $x \in E$ справедливо неравенство $\mid r_{n}(x)\mid < \varepsilon$, а значит ряд (16.2) сходится равномерно. Обратно, если $r_{n}(x)$ равномерно сходится к нулю, то для всех $x \in E$ справедливо неравенство $\mid r_{n}(x)\mid < \varepsilon$. Поэтому и $\mu_{n} = \sup_{x\in E} \mid r_{n}(x)\mid \leq \varepsilon$, т.е. $\mu_{n} \rightarrow 0$ при $n \rightarrow \infty$.

Пример 3. Исследовать на равномерную сходимость ряд $\sum_\left(n=1\right)^\infty \frac{(-1)^{n}}{x^{2}+n}$ на множестве $\mathbb{R}$

Данный ряд является рядом лейбницевского типа и поэтому, согласно теореме об оценке остатка ряда лейбницевского типа, $\mid r_{n}(x)\mid \leq \frac{1}{x^{2}+n+1}\leq \frac{1}{n+1}$. Таким образом, $\mu_{n}\leq \frac{1}{n+1} \rightarrow 0 \; \; (n\rightarrow \infty)$, и, следовательно, данный ряд сходится равномерно на $\mathbb{R}$.

Теорема(критерий Коши равномерной сходимости последовательности). Для того чтобы последовательность функций {$f_{n}$} равномерно сходилась на множестве $E$ к некоторой функции, необходимо и достаточно, чтобы для любого $\varepsilon > 0$ существовал такой номер $N$, зависящий только от $\varepsilon$, что для любых $n,m \geq N$ и для любого $x \in E$ было выполнено неравенство $\mid f_n(x)-f_m(x)\mid < \varepsilon$.

Необходимость. Пусть последовательность {$f_n$} сходится к $f$ равномерно на $E$. Зададим $\varepsilon > 0 $. Тогда найдется такой номер $N$, что для все $n\geq N$ и для всех $x \in E$ справедливо неравенство $\mid f_n(x) — f(x)\mid < \frac{\varepsilon}{2}$. Если возьмем произвольные, $n,m \geq N$, то для любого $x \in E$ получим $$\mid f_n(x) — f_m(x)\mid \leq \mid f_n(x) — f(x)\mid + \mid f_m(x) — f(x)\mid < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$ т.е. выполнено условие теоремы (условие Коши).
Достаточность. Пусть выполнено условие Коши. Зафиксируем $x \in E$ и получим числовую последовательность {$f_n(x)$}, которая, согласно условию Коши, является фундаментальной и, следовательно, сходящейся. Обозначим ее предел через $f(x)$. Так как $x \ in E$ произвольное, то, проделав эту операцию для все $x \in E$, получим функцию $f(x)$. Покажем, что последовательность {$f_n(x)$} стремится к $f(x)$ равномерно на $E$. Зададим $\varepsilon > 0$. Тогда найдется такой номер $N$, что для всех $n,m\geq N$ и для любого $x \in E$ справедливо неравенство $\mid f_n(x)-f_m(x)\mid < \varepsilon$. Зафиксируем $n \geq N, x \in E$ и устремим $m\rightarrow \infty$. Тогда получим $\mid f_n(x)-f(x)\mid \leq \varepsilon.$ Это неравенство выполнено для любого $n \geq N$ и для всех $x \in E$, а это и означает, что последовательность {$f_n$} сходится к $f$ равномерно на $E$.

Доказанную теорему можно переформулировать для рядов следующим образом.

Теорема(критерий Коши равномерной сходимости ряда). Для того чтобы ряд $\sum_\left(n=1\right)^\infty u_n(x)$ равномерно сходился на множестве $E$, необходимо и достаточно, чтобы для любого $E > 0$ существовал такой номер $N$, зависящий только от $\varepsilon$, что для всех $n \geq N, p \in \mathbb{N}$ и для любого $x \in E$ выполнялось неравенство $\mid \sum_{k=n+1}^{n+p} u_k(x)\mid < \varepsilon$.

Эта теорема вытекает из предыдущей, если учесть, что равномерная сходимость ряда определяется как равномерная сходимость последовательности его частичных сумм.

Теорема (признак Вейерштрасса равномерной сходимости ряда). Пусть дан ряд $$ \sum_{n+1}^{\infty} u_n(x) \; \; \; (x \in E). \qquad (16.3)$$ Предположим, что существует числовая последовательность {$a_n$}, такая, что $\mid u_n(x)\mid \leq a_n \; \; \; (n=1,2…)$ для всех $x \in E$, и числовой ряд $\sum_{n=1}^\infty a_n$ сходится. Тогда ряд (16.3) сходится равномерно на $E$.

В силу условия теоремы, имеем $$\mid\sum_{k=n+1}^{n+p} u_k(x)\mid \leq \sum_{k=n+1}^{n+p} a_k \; \; \; (x \in E).$$ Так как ряд $\sum_{n=1}^\infty a_n$ сходится по условию, то, в силу критерия Коши для числовых рядов, для любого $\varepsilon > 0$ найдется такой номер $N$, что для всех $n \geq N$ и для любого $p \in \mathbb{N}$ справедливо неравенство $\sum_{k=n+1}^{n+p} a_k < \varepsilon$. Но тогда и неравенство $\mid\sum_{k=n+1}^{n+p} u_k(x) \mid < \varepsilon$ будет выполненным для всех $x \in E$, т.е. выполнено условие критерия Коши равномерной сходимости функционального ряда, в силу которого ряд (16.3) сходится равномерно на $E$.

Замечание 1. Признак Вейерштрасса является лишь достаточным условием равномерной сходимости функционального ряда. В самом деле, рассмотренный выше пример 3 ряда $\sum_{n=1}^{\infty} \frac{(-1)^n}{x^2+n}$ показывает, что этот ряд хотя и сходится равномерно на $\mathbb{R}$, но оценить сверху его слагаемые можно лишь слагаемыми расходящегося числового ряда $\sum_{n=1}^{\infty} \frac{1}{n}$

Замечание 2. Признак Вейерштрасса дает достаточное условие не только равномерной, но и абсолютной сходимости ряда. Это сразу следует из неравенства $$\sum_{k=n+1}^{n+p} \mid u_k(x)\mid \leq \sum_{k=n+1}^{n+p} a_k \; \; \; (x \in E).$$

Замечание 3. Признак Вейерштрасса заключается в том, что из сходимости ряда $\sum_{n=1}^{\infty} a_n $, где $a_n = \sup_{x \in E}\mid u_n(x)\mid$, следует равномерная (и абсолютная) сходимость ряда $\sum_{n=1}^\infty u_{n}(x)$ на множестве $E$.

Пример 4. Рассмотрим ряд $\sum_{n=1}^\infty \frac{x}{1+n^4x^2}$ на $\mathbb{R}$. Используя очевидное неравенство $2\mid\!\! a\mid \leq 1 + a^2$, находим мажорантный числовой ряд $$\mid \frac{x}{1+n^4x^2}\mid \leq \frac{1}{n^2} \frac{\mid n^2x\mid}{1+(n^2x)^2} \leq \frac{1}{2}\frac{1}{n^2}.$$ Поскольку числовой ряд $\sum_{n=1}^\infty \frac{1}{2}\frac{1}{n^2}$ сходится, то исходный функциональный ряд сходится равномерно на $\mathbb{R}$.

Пример 5. Ряд $\sum_{n=1}^\infty \frac{\cos {nx}}{n^2}$ сходится равномерно на $\mathbb{R}$, поскольку $\mid \frac{\cos {nx}}{n^2}\mid \leq \frac{1}{n^2}$ и числовой ряд $\sum_{n=1}^\infty \frac{1}{n^2}$ сходится.

Теорема(признак Абеля равномерной сходимости) Пусть на множестве $E$ заданы две функциональные последовательности {$a_n(x)$} и {$b_n(x)$}, такие, что при каждом $x \in E$ числовая последовательность {$a_n(x)$} монотонна, функции $a_n(x)$ ограничены в совокупности, т.е. существует такое $M$, что $\mid a_n(x)\mid \leq M \;\;\; (x \in E, n = 1,2,…)$, а ряд $\sum_{n=1}^\infty b_n(x)$ сходится равномерно на $E$. Тогда ряд $\sum_{n=1}^\infty a_n(x) b_n(x)$ сходится равномерно на $E$.

Теорема(признак Дирихле равномерной сходимости). Пусть на множестве $E$ заданы две последовательности функций {$a_n(x)$} и {$b_n(x)$}, такие, что при каждом $x \in E$ числовая последовательность {$a_n(x)$} монотонна, функциональная последовательность {$a_n(x)$} равномерно сходится к нулю на $E$, а частичные суммы ряда $\sum_{n=1}^\infty b_n(x)$ ограничены в совокупности на $E$, т.е. существует такое число $M$, что $\mid\sum_{k=1}^n b_k(x)\mid \leq M (x \in E, n = 1,2,…)$. Тогда ряд $\sum_{n=1}^\infty a_n(x) b_n(x)$ сходится равномерно на $E$.

Доказательства признаков Абеля и Дирихле легко провести, основываясь на критерии Коши и применяя преобразование Абеля(точно так же, как это было сделано при доказательстве признаков Абеля и Дирихле сходимости числовых рядов). Рекомендуется провести эти доказательства самостоятельно.

Пример 6. Рассмотрим ряды вида $\sum_{n=1}^\infty a_n(x) \cos nx $ и $\sum_{n=1}^\infty a_n(x) \sin nx$, где последовательность чисел $a_n$ монотонно стремится к нулю. К ряду $\sum_{n=1}^\infty a_n(x) \cos nx $ применим признак Дирихле. Для этого рассмотрим суммы $S_n(x)=\sum_{k=1}^n \cos kx$. Имеем $$2\sin \frac{x}{2} S_n(x) =\sum_{k=1}^n 2\sin \frac{x}{2} \cos kx=$$ $$=\sin \frac{3x}{2} — \sin \frac{x}{2} + \sin \frac{5x}{2} — \sin \frac{3x}{2} + … + \sin (n+ \frac{1}{2})x — \sin (n — \frac{1}{2})x =$$ $$= \sin (n+ \frac{1}{2})x — \sin \frac{x}{2}.$$ Поэтому $$S_n(x) = \frac{\sin (n + \frac{1}{2})x}{2\sin \frac{x}{2}} — \frac{1}{2} \;\;\; (0 < x <2\pi), \;\;\;\; \mid S_n(x)\mid \leq \frac{1}{2} + \frac{1}{2\mid \sin \frac{x}{2}\mid}.$$ Если $x \rightarrow 0$, то $S_n(x) \rightarrow n$, так что в окрестности нуля нарушается равномерная ограниченность сумм $S_n(x)$. Если же $\delta \leq x \leq 2\pi — \delta$, где $0 < \delta < \pi$, то $\mid S_n(x)\mid \leq \frac{1}{2} + \frac{1}{2 \sin \frac{\delta}{2}}$ и поэтому $\left[ \delta, 2\pi — \delta\right]$ выполнены все условия признака Дирихле, в силу которого ряд $\sum_{n=1}^\infty a_n \cos {nx}$ сходится равномерно на $\left[ \delta, 2\pi — \delta\right]$. На всем интервале $(0,2\pi)$ признак Дирихле неприменим, но это еще не означает, что ряд сходится неравномерно, поскольку признак Дирихле — лишь достаточное условие равномерной сходимости ряда.

Покажите самостоятельно, что ряд $\sum_{n=1}^\infty a_n \sin {nx}$, где последовательность {$a_n$} монотонно убывает к нулю, сходится равномерно на $\left[ \delta, 2\pi — \delta\right]$, где произвольное $0 < \delta < \pi$. Для этого полезно использовать равенство $$ \sum_{k=1}^n \sin kx = \frac{1}{2 \sin \frac{x}{2}} \sum_{k=1}^n 2 \sin \frac{x}{2} \sin kx = $$ $$ = \frac{1}{2 \sin \frac{x}{2}} \sum_{k=1}^n [\cos (k — \frac{1}{2})x — \cos (k + \frac{1}{2})x] = $$ $$ =\frac{1}{2 \sin \frac{x}{2}} [\cos \frac{x}{2} — \cos(n+\frac{1}{2})x] \;\;\; (0 < x < 2\pi)$$ и применить признак Дирихле.

Примеры решений задач

  1. Исследовать на равномерную сходимость на интервале $(-\infty, +\infty)$ ряд $\sum_{n=1}^{\infty} \frac{nx}{1+n^5x^2}$.
Решение

Удобно применить признак Вейерштрасса, так как несложно подобрать мажоранту для ряда. Найдем максимум общего члена ряда: $$\frac{\text{d}}{\text{d}x}(\frac{nx}{1+n^5x^2})= n\frac{1-x^2n^5}{(1+x^2n^5)^2} = 0 \Rightarrow x_0 = \frac{1}{n^{\frac{5}{2}}}.$$ Следовательно, $$\mid\frac{nx}{1+n^5x^2}\mid \leq \frac{1}{2n^{\frac{3}{2}}}.$$ Мажорирующий ряд $\sum_{n=1}^\infty \frac{1}{2n^{\frac{3}{2}}}$ сходится. Поэтому исходный ряд сходится равномерно.

[свернуть]

Исследовать на равномерную сходимость на отрезке  $[0,2\pi]$ ряд $\sum_{n=1}^{+\infty} = \frac{\sin nx}{n}$ .

Решение

На данном отрезке частичные суммы вспомогательного ряда не будут ограничены. Применим критерий Коши. Выберем $m=2n, x_0 = \frac{1}{n}$, тогда $$ \mid \frac{\sin \frac{n+1}{n}}{n+1} + … + \frac{\sin 2}{2n}\mid \geq \frac{\sin 1}{n+1} + … + \frac{\sin 1}{2n} \geq \frac{1}{2}\sin 1 = \varepsilon_0.$$ Для ряда выполнился критерий Коши, следовательно, ряд не сходится равномерно.

[свернуть]

Равномерная сходимость

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме.

Список литературы


Тер-Крикоров А.М., Шабунин М.И. Курс Математического Анализа. 1997; с исправлениями 2001. ФИЗМАТЛИТ, 2001, стр.  384 — 407.

В.И.Коляда, А.А.Кореновский. Курс лекций по математическому анализу Т.2. Одесса, «Астропринт», 2010, стр. 32-41.

Г. М. Фихтенгольц «Курс дифференциального и интегрального исчисления» ФИЗМАТЛИТ, 1964 т.2, стр. 376-386.

2.5 Критерий Коши

Если для исследования сходимости последовательности применять определение предела, то мы заранее должны знать, является ли данная последовательность сходящейся и значение ее предела. Используя определение предела, мы можем лишь доказывать выдвинутую гипотезу. Однако в ряде случаев по самому виду последовательности трудно определить, является ли она сходящейся или расходящейся. Например, $x_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n}$ . В связи с этим возникает необходимость найти внутреннее свойство последовательности, равносильное сходимости и не
зависящее от числа $a$ – предела последовательности. Мы докажем, что таким свойством является фундаментальность.

Определение. Последовательность $\{x_n\}$ называется фундаментальной (сходящейся в себе), если для любого $\varepsilon > 0$ найдется такой номер $N$, зависящий, вообще говоря, от $\varepsilon$, что для всех номеров $n \geqslant N$, $m \geqslant N$ справедливо неравенство $|x_n — x_m| < \varepsilon$.

Существенное отличие определения фундаментальности от определения предела состоит в том, что в определении предела мы должны знать значение предела, а в определении фундаментальности это не требуется. Смысл определения предела состоит в том, что все элементы последовательности с достаточно большими номерами мало отличаются от значения предела, т. е. $|x_n — a| < \varepsilon$ при $n \geqslant N = N(\varepsilon)$. В определении фундаментальности требуется чтобы все элементы последовательности с достаточно большими номерами мало отличались друг от друга $\Big(|x_n — x_m| < \varepsilon$, $n, m \geqslant N = N(\varepsilon)\Big).$

Равносильность сходимости последовательности и ее фундаментальности устанавливает следующая теорема.

Теорема (критерий Коши). Для того чтобы последовательность была сходящейся, необходимо и достаточно, чтобы она была фундаментальной.

Необходимость доказывается совсем просто. В самом деле, нужно показать, что из сходимости следует фундаментальность. Пусть последовательность $\{x_n\}$ сходится и $\lim\limits_{n\to \infty}x_n = a$. Зададим $\varepsilon > 0$ и найдем номер $N$, такой, что для любого $n \geqslant N$ справедливо неравенство $|x_n — a| < \frac{\varepsilon}{2}$. Если $n, m \geqslant N$, то получим $$|x_n — x_m| \leqslant |x_n — a| + |x_m — a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$ а это и означает, что $\{x_n\}$ – фундаментальна.

Достаточность. Нужно показать, что из фундаментальности последовательности следует ее сходимость. Сначала мы покажем, что из фундаментальности следует ограниченность. Затем, используя лемму Больцано – Вейерштрасса, из ограниченной последовательности выделим сходящуюся подпоследовательность и, наконец, снова используя фундаментальность, покажем, что и вся последовательность сходится к тому же пределу, что и выделенная подпоследовательность.

Итак, пусть $\{x_n\}$ – фундаментальная последовательность. Докажем ее ограниченность. Зададим $\varepsilon = 1$ и, пользуясь фундаментальностью, найдем номер $N_1$, такой, что для любых $n, m \geqslant N_1$ справедливо неравенство $|x_n — x_m| < 1$. Зафиксируем $m = N_1$. Тогда получим, что для всех $n \geqslant N_1$ имеет место неравенство $|x_n — x_m| < 1$, т. е. ${x_N}_1 — 1 < x_n < {x_N}_1 + 1$. Отсюда следует, что $|x_n| \leqslant |{x_N}_1| + 1$ для всех $n \geqslant N_1$. Во множестве $E = \{|{x_N}_1| + 1, |x_1| , \ldots , |{x_N}_1 − 1|\}$, состоящего из конечного числа элементов, выберем наибольший $A = \max\{|{x_N}_1| + 1, |x_1| ,\ldots, |{x_N}_1 − 1|\}$. Тогда получим, что $|x_n| \leqslant A$ для всех $n = 1, 2,\ldots$, а это и означает, что $\{x_n\}$ – ограниченная последовательность.

Применяя теперь к ограниченной последовательности $\{x_n\}$ лемму Больцано – Вейерштрасса, выделим из нее сходящуюся подпоследовательность ${\{{x_n}_k\}}^\infty_{k = 1}$ и обозначим через a предел этой подпоследовательности. Покажем, что вся последовательность $\{x_n\}$ также сходится к числу a, т. е. что $\lim\limits_{n\to \infty}x_n = a$.

Зададим $\varepsilon > 0$ и, пользуясь фундаментальностью последовательности $\{x_n\}$, найдем такой номер $N$, что для всех номеров $n, m \geqslant N$ справедливо неравенство $|x_n − x_m| < \frac{\varepsilon}{2}$. Далее, пользуясь тем, что $\lim\limits_{k\to \infty}{x_n}_k = a$, для заданного $\varepsilon$ найдем номер $k$, такой, что $n_k \geqslant N$ (это возможно, поскольку $n_k \rightarrow \infty$ при $k \rightarrow \infty$) и $|{x_n}_k — a| < \frac{\varepsilon}{2}$. Положим $m = n_k$. Тогда получим, что для любого $n \geqslant N$ справедливо неравенство $|x_n − {x_n}_k| < \frac{\varepsilon}{2}$. Отсюда следует, что для $n \geqslant N$ $$|x_n — a| \leqslant |x_n — {x_n}_k| + |{x_n}_k — a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Итак, для заданного $\varepsilon > 0$ мы нашли номер $N$, начиная с которого справедливо неравенство $|x_n — a| < \varepsilon$. Поскольку выбранное $\varepsilon > 0$ произвольно, то по определению предела последовательности получаем, что $\lim\limits_{n\to \infty}x_n = a$.

Определение фундаментальности последовательности можно сформулировать в такой эквивалентной форме.

Определение. Последовательность $\{x_n\}$ называется фундаментальной, если для любого $\varepsilon > 0$ найдется такой номер $N$, зависящий, вообще говоря, от $\varepsilon$, что для любого $n \geqslant N$ и для любого $p \in N$ справедливо неравенство $|x_{n + p} — x_n| < \varepsilon$.

Пользуясь этим определением, скажем, что последовательность $\{x_n\}$ не является фундаментальной, если найдется такое $\varepsilon_0 > 0$, что для любого $N$ существуют такой номер $n \geqslant N$ и такое натуральное число $p$, что $|x_{n + p} − x_n| \geqslant \varepsilon_0$.

Пример 1. Рассмотрим последовательность $x_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n}$. Для натуральных $n$ и $p$ имеем $x_{n + p} − x_n = \frac{1}{n + 1} + \ldots + \frac{1}{n + p} \geqslant \frac{1}{n + p} + \ldots + \frac{1}{n + p} = \frac{p}{n + p}$. Если $n$ зафиксировано, то для $p = n$ получаем $|x_{n + p} − x_n| \geqslant \frac{1}{2}$. Выберем $\varepsilon_0 = \frac{1}{2} > 0$. Тогда для любого номера $N$ положим $n = N$, $p = n$ и будем иметь $|x_{n + p} − x_n| \geqslant \varepsilon_0$. Это означает, что данная последовательность не является фундаментальной и, следовательно, в силу критерия Коши, она расходится.

Пример 2. Покажем, что последовательность $x_n = \frac{\sin 1}{1^2} + \frac{\sin 2}{2^2} + \ldots + \frac{\sin n}{n^2}$ фундаментальна, а значит, сходящаяся. Для натуральных $n$ и $p$ имеем $$|x_{n + p} − x_n| \leqslant \frac{1}{(n + 1)^2} + \ldots + \frac{1}{(n + p)^2} \leqslant $$ $$\leqslant \frac{1}{n(n + 1)} + \ldots + \frac{1}{(n + p — 1)(n + p)} =$$ $$= \frac{1}{n} — \frac{1}{n + 1} + \ldots + \frac{1}{n + p — 1} — \frac{1}{n + p} =$$ $$= \frac{1}{n} — \frac{1}{n + p} \leqslant \frac{1}{n} < \varepsilon,$$ если только $n \geqslant N = [\frac{1}{\varepsilon}] + 1$. Этим самым доказано, что данная последовательность фундаментальна.

Пример 3. Доказать, что последовательность $x_n = \frac{a_1}{1^2} + \frac{a_2}{2^2} + \ldots + \frac{a_n}{n^2},$ где $|a_n| \leqslant 2$ для всех $n$ натуральных, сходится, с помощью критерия Коши.

Решение

Для натуральных $n$ и $p$ $$|x_{n + p} — x_n| = \frac{|a_{n + 1}|}{(n + 1)^2} + \ldots + \frac{|a_{n + p}|}{(n + p)^2} \leqslant $$ $$\leqslant \frac{2}{(n + 1)^2} + \ldots + \frac{2}{(n + p)^2} \leqslant $$ $$\leqslant \frac{2}{(n + 1)n} + \ldots + \frac{2}{(n + p)(n + p — 1)} =$$ $$= \frac{2}{n} — \frac{2}{n + 1} + \ldots + \frac{2}{n + p — 1} — \frac{2}{n + p} =$$ $$= \frac{2}{n} — \frac{2}{n + p} \leqslant \frac{2}{n} < \varepsilon$$ если только $n \geqslant N = [\frac{2}{\varepsilon}] + 1$. таким образом доказано, что последовательность фундаментальна, а следовательно она сходится.

Упражнение. Покажите, что условие $\lim\limits_{n \to \infty}(x_{n+p} — x_n) = 0$, справедливое при любом натуральном $p$, не влечет фундаментальность последовательности $\{x_n\}$

Литература

Критерий Коши

Тест по теме: «Фундаментальные последовательности. Критерий Коши сходимости числовой последовательности.»


Таблица лучших: Критерий Коши

максимум из 5 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Условия сходимости тригонометрического ряда Фурье в точке. Признак Дини. Следствия

Необходимые понятия

Условие Гёльдера. Будем говорить, что функция $f(x)$ удовлетворяет в точке $x_0$ условия Гёльдера, если существуют односторонние конечные пределы $f(x_0 \pm 0)$ и такие числа $\delta > 0$, $\alpha \in (0,1]$ и $c_0 > 0$, что для всех $t \in (0,\delta)$ выполнены неравенства: $|f(x_0+t)-f(x_0+0)|\leq c_0t^{\alpha }$, $|f(x_0-t)-f(x_0-0)|\leq c_0t^{\alpha }$.

Формула Дирихле. Преобразованной формулой Дирихле называют формулу вида:
$$S_n(x_0)= \frac{1}{\pi}\int\limits_{0}^{\pi}(f(x_0+t)+f(x_0-t))D_n(t)dt \quad (1),$$ где $D_n(t)=\frac{1}{2}+ \cos t + \ldots+ \cos nt = \frac{\sin(n+\frac{1}{2})t}{2\sin\frac{t}{2}} (2)$ — ядро Дирихле.

Используя формулы $(1)$ и $(2)$, запишем частичную сумму ряда Фурье в следующем виде:
$$S_n(x_0)= \frac{1}{\pi}\int\limits_{0}^{\pi}\frac{f(x_0+t)+f(x_0-t)}{2\sin\frac{t}{2}}\sin \left ( n+\frac{1}{2} \right ) t dt$$
$$\Rightarrow \lim\limits_{n \to \infty }S_n(x_0) — \frac{1}{\pi}\int\limits_{0}^{\pi}\frac{f(x_0+t)+f(x_0-t)}{2\sin\frac{t}{2}} \cdot \\ \cdot \sin \left (n+\frac{1}{2} \right )t dt = 0 \quad (3)$$

Для $f \equiv \frac{1}{2}$ формула $(3)$ принимает следующий вид: $$ \lim\limits_{n \to \infty }\frac{1}{\delta}\frac{\sin(n+\frac{1}{2})t}{2\sin\frac{t}{2}}dt=\frac{1}{2}, 0<\delta <\pi. \quad (4)$$

Сходимость ряда Фурье в точке

Теорема. Пусть $f(x)$ — $2\pi$-периодическая абсолютно интегрируема на $[-\pi,\pi]$ функция и в точке $x_0$ удовлетворяет условию Гёльдера. Тогда ряд Фурье функции $f(x)$ в точке $x_0$ сходится к числу $$\frac{f(x_0+0)+f(x_0-0)}{2}.$$

Если в точке $x_0$ функция $f(x)$ — непрерывна, то в этой точке сумма ряда равна $f(x_0)$.

Доказательство

Так как функция $f(x)$ удовлетворяет в точке $x_0$ условию Гёльдера, то при $\alpha > 0$ и $0 < t$ $ < \delta$ выполнены неравенства (1), (2).

Запишем при заданном $\delta > 0$ равенства $(3)$ и $(4)$. Умножая равенство $(4)$ на $f(x_0+0)+f(x_0-0)$ и вычитая результат из равенства $(3)$, получаем $$ \lim\limits_{n \to \infty} (S_n(x_0) — \frac{f(x_0+0)+f(x_0-0)}{2} — \\ — \frac{1}{\pi}\int\limits_{0}^{\delta}\frac{f(x_0+t)+f(x_0-t)-f(x_0+0)-f(x_0-0)}{2\sin \frac{t}{2}} \cdot \\ \cdot \sin \left (n + \frac{1}{2} \right )t \, dt ) = 0. \quad (5)$$

Из условия Гёльдера следует, что функция $$\Phi(t)= \frac{f(x_0+t)+f(x_0-t)-f(x_0+0)-f(x_0-0)}{2\sin \frac{t}{2}}.$$ абсолютно интегрируема на отрезке $[0,\delta]$. В самом деле, применяя неравенство Гёльдера, получаем, что для функции $\Phi(t)$ справедливо следующее неравенство: $|\Phi(t)| \leq \frac{2c_0t^{\alpha }}{\frac{2}{\pi}t} = \pi c_0t^{\alpha — 1} (6)$, где $\alpha \in (0,1]$.

В силу признака сравнения для несобственных интегралов из неравенства $(6)$ следует, что $\Phi(t)$ абсолютно интергрируема на $[0,\delta].$

В силу леммы Римана $$\lim\limits_{n \to \infty}\int\limits_{0}^{\delta}\Phi(t)\sin \left (n + \frac{1}{2} \right)t\cdot dt = 0 .$$

Из формулы $(5)$ теперь следует, что $$\lim\limits_{n \to \infty}S_n(x_0) = \frac{f(x_0+0)+f(x_0-0)}{2} .$$

[свернуть]

Следствие 1. Если $2\pi$-периодическая и абсолютно интегрируема на $[-\pi,\pi]$ функция $f(x)$ имеет в точке $x_0$ производную, то ее ряд Фурье сходится в этой точке к $f(x_0)$.

Следствие 2. Если $2\pi$-периодическая и абсолютно интегрируема на $[-\pi,\pi]$ функция $f(x)$ имеет в точке $x_0$ обе односторонние производные, то ее ряд Фурье сходится в этой точке к $\frac{f(x_0+0)+f(x_0-0)}{2}.$

Следствие 3. Если $2\pi$-периодическая и абсолютно интегрируема на $[-\pi,\pi]$ функция $f(x)$ удовлетворяет в точках $-\pi$ и $\pi$ условию Гёльдера, то в силу периодичности сумма ряда Фурье в точках $-\pi$ и $\pi$ равна $$\frac{f(\pi-0)+ f(-\pi+0)}{2}.$$

Признак Дини

Определение. Пусть $f(x)$ — $2\pi$-периодическая функция, Точка $x_0$ будет регулярной точкой функции $f(x)$, если

    1) существуют конечные левый и правый пределы $\lim\limits_{x \to x_0+0 }f(x)= \lim\limits_{x \to x_0-0 }f(x)= f(x_0+0)=f(x_0-0),$
    2) $f(x_0)=\frac{f(x_0+0)+f(x_0-0)}{2}.$

Теорема. Пусть $f(x)$ — $2\pi$-периодическая абсолютно интегрируема на $[-\pi,\pi]$ функция и точка $x_0 \in \mathbb{R}$ — регулярная точка функции $f(x)$. Пусть функция $f(x)$ удовлетворяет в точке $x_0$ условиям Дини: существуют несобственные интегралы $$\int\limits_{0}^{h}\frac{|f(x_0+t)-f(x_0+0)|}{t}dt, \\ \int\limits_{0}^{h}\frac{|f(x_0-t)-f(x_0-0)|}{t}dt,$$

тогда ряд Фурье функции $f(x)$ в точке $x_0$ имеет сумму $f(x_0)$, т.е. $$ \lim\limits_{n \to \infty }S_n(x_0)=f(x_0)=\frac{f(x_0+0)+f(x_0-0)}{2}.$$

Доказательство

Для частичной суммы $S_n(x)$ ряда Фурье имеет место интегральное представление $(1)$. И в силу равенства $\frac{2}{\pi }\int\limits_{0}^{\pi }D_n(t) \, dt=1,$
$$ f(x_0)= \frac{1}{\pi }\int\limits_{0}^{\pi }f(x_0+0)+f(x_0-0)D_n(t) \, dt$$

Тогда имеем $$S_n(x_0)-f(x_0) = \frac{1}{\pi}\int\limits_{0}^{\pi}(f(x_0+t)-f(x_0+0))D_n(t) \, dt + $$ $$+\frac{1}{\pi}\int\limits_{0}^{\pi}(f(x_0-t)-f(x_0-0))D_n(t) \, dt. \quad(7)$$

Очевидно, что теорема будет доказана, если докажем, что оба интеграла в формуле $(7)$ имеют пределы при $n \to \infty $ равные $0$. Рассмотрим первый интеграл: $$I_n(x_0)=\int\limits_{0}^{\pi}(f(x_0+t)-f(x_0+0))D_n(t)dt. $$

В точке $x_0$ выполняется условие Дини: сходится несобственный интеграл $$\int\limits_{0}^{h}\frac{|f(x_0+t)-f(x_0+0)|}{t} \, dt .$$

Поэтому для любого $\varepsilon > 0$ существует $\delta \in (0, h)$ такое, что $$\int\limits_{0}^{\delta }\frac{\left | f(x_0+t)-f(x_0+0) \right |}{t}dt < \frac{\varepsilon }{\pi }.$$

По выбранному $\varepsilon > 0$ и $\delta > 0$ интеграл $I_n(x_0)$ представим в виде $I_n(x_0)=A_n(x_0)+B_n(x_0)$, где
$$A_n(x_0)=\int\limits_{0}^{\delta }(f(x_0+t)-f(x_0+0))D_n(t)dt ,$$ $$B_n(x_0)=\int\limits_{\delta}^{\pi }(f(x_0+t)-f(x_0+0))D_n(t)dt .$$

Рассмотрим сначала $A_n(x_0)$. Используя оценку $\left | D_n(t) \right |<\frac{\pi}{2t},$ для любого $t \in (0,\pi)$, получаем, что $$\left | (f(x_0+t)-f(x_0+0))D_n(t) \right | \leq$$ $$\leq \frac{\pi}{2} \cdot \frac{f(x_0+t)-f(x_0+0)}{t}$$

для всех $t \in (0, \delta)$.

Поэтому $$A_n(x_0) \leq \frac{\pi}{2} \int\limits_{0}^{\delta } \frac{|f(x_0+t)-f(x_0+0)|}{t}dt< \frac{\varepsilon }{2}. $$

Перейдем к оценке интеграла $B_n(x_0)$ при $n \to \infty $. Для этого введем функцию $$ \Phi (t)=\left\{\begin{matrix}
\frac{f(x_0+t)-f(x_0+0)}{2\sin \frac{t}{2}}, 0< \delta \leq t \leq \pi, \\ 0, -\pi\leq t< \delta . \end{matrix}\right. $$

$$B_n(x_0)=\int\limits_{-\pi}^{\pi}\Phi (t) \sin \left (n+\frac{1}{2} \right )t\,dt.$$ Получаем, что $\lim\limits_{n \to \infty }B_n(x_0)=0$, а это означает, что для выбранного ранее произвольного $\varepsilon > 0$ существует такое $N$, что для всех $n>N$ выполняется неравенство $|I_n(x_0)|\leq |A_n(x_0)| + |B_n(x_0)| < \varepsilon $, т.е. $$\lim\limits_{n \to \infty }I_n(x_0)=0.$$

Совершенно аналогично доказывается, что и второй интеграл формулы $(7)$ имеет равный нулю предел при $n \to \infty $.

[свернуть]

Следствие Если $2\pi$ периодическая функция $f(x)$ кусочно дифференциируема на $[-\pi,\pi]$, то ее ряд Фурье в любой точке $x \in [-\pi,\pi]$ сходится к числу $$\frac{f(x_0+0)+f(x_0-0)}{2}.$$

Пример 1

На отрезке $[-\pi,\pi]$ найти тригонометрический ряд Фурье функции $f(x)=\left\{\begin{matrix}
1, x \in (0,\pi),\\ -1, x \in (-\pi,0),
\\ 0, x=0.
\end{matrix}\right.$

Исследовать сходимость полученного ряда.

Продолжая периодически $f(x)$ на всю вещественную ось, получим функцию $\widetilde{f}(x)$, график которой изображен на рисунке.

ggggggggg

Так как функция $f(x)$ нечетна, то $$a_k=\frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x)\cos kx dx =0;$$

$$b_k=\frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x)\sin kx \, dx = $$ $$=\frac{2}{\pi}\int\limits_{0}^{\pi}f(x)\sin kx \, dx =$$ $$=-\frac{2}{\pi k}(1- \cos k\pi)$$

$$b_{2n}=0, b_{2n+1} = \frac{4}{\pi(2n+1)}.$$

Следовательно, $\tilde{f}(x)\sim \frac{4}{\pi}\sum_{n=0}^{\infty}\frac{\sin(2n+1)x}{2n+1}.$

Так как ${f}'(x)$ существует при $x\neq k \pi$, то $\tilde{f}(x)=\frac{4}{\pi}\sum_{n=0}^{\infty}\frac{\sin(2n+1)x}{2n+1}$, $x\neq k \pi$, $k \in \mathbb{Z}.$

В точках $x=k \pi$, $k \in \mathbb{Z}$, функция $\widetilde{f}(x)$ не определена, а сумма ряда Фурье равна нулю.

Полагая $x=\frac{\pi}{2}$, получаем равенство $1 — \frac{1}{3} + \frac{1}{5}- \ldots + \frac{(-1)^n}{2n+1}+ \ldots = \frac{\pi}{4}$.

[свернуть]

Пример 2

Найти ряд Фурье следующей $2\pi$-периодической и абсолютно интегрируемой на $[-\pi,\pi]$ функции:
$f(x)=-\ln |
\sin \frac{x}{2}|$, $x \neq 2k\pi$, $k \in \mathbb{Z}$, и исследовать на сходимость полученного ряда.

ttttttt

Так как ${f}'(x)$ существует при $ x \neq 2k \pi$, то ряд Фурье функции $f(x)$ будет сходиться во всех точках $ x \neq 2k \pi$ к значению функции. Очевидно, что $f(x)$ четная функция и поэтому ее разложение в ряд Фурье должно содержать косинусы. Найдем коэффициент $a_0$. Имеем $$\pi a_0 = -2 \int\limits_{0}^{\pi}\ln \sin \frac{x}{2}dx = $$ $$= -2 \int\limits_{0}^{\frac{\pi}{2}}\ln \sin \frac{x}{2}dx \,- \, 2\int\limits_{\frac{\pi}{2}}^{\pi}\ln \sin \frac{x}{2}dx =$$ $$= -2 \int\limits_{0}^{\frac{\pi}{2}}\ln \sin \frac{x}{2}dx \, — \, 2\int\limits_{0}^{\frac{\pi}{2}}\ln\cos \frac{x}{2}dx=$$ $$= -2 \int\limits_{0}^{\frac{\pi}{2}}\ln (\frac{1}{2}\sin x)dx =$$ $$= \pi \ln 2 \, — \, 2 \int\limits_{0}^{\frac{\pi}{2}}\ln \sin x dx =$$ $$= \pi \ln 2 \, — \, \int\limits_{0}^{\pi}\ln \sin \frac{t}{2}dt = \pi\ln 2 + \frac{\pi a_0}{2},$$ откуда $a_0= \pi \ln 2$.

Найдем теперь $a_n$ при $n \neq 0$. Имеем $$\pi a_n = -2 \int\limits_{0}^{\pi}\cos nx \ln \sin \frac{x}{2}dx = $$ $$ = \int\limits_{0}^{\pi} \frac{\sin(n+\frac{1}{2})x+\sin (n-\frac{1}{2})x}{2n \sin\frac{x}{2}}dx=$$ $$= \frac{1}{2n} \int\limits_{-\pi}^{\pi} \begin{bmatrix}
D_n(x)+D_{n-1}(x)\\ \end{bmatrix}dx.$$

Здесь $D_n(x)$- ядро Дирихле, определяемое формулой (2) и получаем, что $\pi a_n = \frac{\pi}{n}$ и, следовательно, $a_n = \frac{1}{n}$. Таким образом, $$-\ln |
\sin \frac{x}{2}| = \ln 2 + \sum_{n=1}^{\infty } \frac{\cos nx}{n}, x \neq 2k\pi, k \in \mathbb{Z}.$$

[свернуть]

Литература

Тест по материалу данной темы:

Формулы Ньютона-Лейбница

Если существует функция [latex]F(x)[/latex], непрерывная на отрезке [latex][a,b][/latex] и такая, что [latex]F(x)=f(x)[/latex] при [latex]a \leq x < b[/latex], то для несобственного интеграла $\int_{a}^{b}f(x)dx$ справедлива обобщенная формула Ньютона-Лейбница:

$$ \int\limits_{a}^{b}f(x)dx=\lim\limits_{\varepsilon \to +0} \int\limits_{a}^{b-\varepsilon}f(x)dx=\lim\limits_{\varepsilon \to +0}[F(b-\varepsilon)-F(a)]$$

Если [latex]f(x)[/latex] непрерывна при [latex]a \leq x < b[/latex] и имеет точку разрыва [latex]x=a[/latex], тогда:

$$ \int\limits_{a}^{b}f(x)dx=\lim\limits_{\varepsilon \to +0} \int\limits_{a+\varepsilon}^{b}f(x)dx=\lim\limits_{\varepsilon \to +0}[F(b)-F(a+\varepsilon)]$$

Если подынтегральная функция не ограничена в отрезке интегрирования ( например [latex]x = c[/latex] ), то эту точку «вырезают», а интеграл $ \int_{a}^{b}f(x)dx$ определяют в предположении, что [latex]F(x)[/latex] — первообразная для [latex]f(x)[/latex], так:

$$\int\limits_{a}^{b}f(x)dx=\lim\limits_{\varepsilon \to +0} \int\limits_{a}^{c -\varepsilon}f(x)dx + \lim\limits_{\varepsilon \to +0} \int\limits_{c+\varepsilon}^{b}f(x)dx=\lim\limits_{\varepsilon \to +0} F(x)|_{a}^{c -\varepsilon} + $$
$$ + \lim\limits_{\varepsilon \to +0} F(x)|_{c+\varepsilon}^{b}=\lim\limits_{\varepsilon \to +0}F(c — \varepsilon)-F(a) + F(b) — \lim\limits_{\varepsilon \to +0}F(c+\varepsilon)$$

Если пределы существуют и конечны, то интеграл $\int_{a}^{b}f(x)dx$ называется сходящимся, в противном случае — расходящимся.

Литература

Тест : Формулы Ньютона-Лейбница

Тест на знание темы «Формулы Ньютона-Лейбница»