Теорема об умножении определителей

Теорема об умножении определителей. Определитель произведения двух квадратных матриц порядка $n$ равен произведению определителей этих матриц: $$\det (A \cdot B)=\det (A) \cdot \det (B)$$ или полная формула: $$\det\left (\prod_{i=1}^{k}A_i\right )= \prod_{i=1}^{k}\det A_i, A_i\in\left(P\right), i=1, \ldots, k.$$

Для доказательства рассмотрим случай $k=2$. Допустим заданы две матрицы $A=\left \| a_{ij} \right \|\in M_n\left ( P \right )$ и $B=\left \| b_{ij} \right \|\in M_n\left ( P \right )$. Воспользуемся вспомогательной блочной матрицей $C=\begin{Vmatrix}A & 0\\-E & B\end{Vmatrix}$ размера $2n\times 2n$, определитель которой имеет вид: $$\Delta = \begin{vmatrix}
a_{11}&a_{12} &\cdots & a_{1n} &0 & 0 & \cdots & 0\\
a_{21}&a_{22} &\cdots & a_{2n} &0 & 0 & \cdots & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot &\cdot & \cdot & \cdot\\
a_{n1}&a_{n2} &\cdots & a_{nn} &0 & 0 & \cdots & 0\\
-1& 0 & \cdots & 0 & b_{11} & b_{12} & \cdots & b_{1n}\\
0 & -1 & \cdots & 0 & b_{21} & b_{22} & \cdots & b_{2n} \\
\cdot & \cdot & \cdot & \cdot & \cdot &\cdot & \cdot & \cdot\\
0 & 0 & \cdots & -1 & b_{n1} & b_{n2} & \cdots & b_{nn}
\end{vmatrix}$$
Вычислим $\Delta$ используя теорему Лапласа. Замечаем, что отличным от нуля будет только $det(A)$. Следовательно, $\Delta=\det(A) \cdot \det(B)$. Теперь с помощью элементарных преобразований изменим $\Delta$ так, что в итоге получим определитель вида $\begin{vmatrix}A & C\\ -E & O\end{vmatrix}$. Где $C$ является произведением матриц $A$ и $B$. Первый столбец умножим на $b_{11}$ и прибавим к $\left ( n+1 \right)$-му столбцу, второй на элемент $b_{21}$ и вновь прибавим к $\left ( n+1 \right )$-му столбцу. Так же обнулим остальные элементы матрицы $B$. Записав подробнее полученный определитель имеем: $$\Delta = \begin{vmatrix}
a_{11}&a_{12} &\cdots & a_{1n} & c_{11} & c_{12} & \cdots & c_{1n}\\
a_{21}&a_{22} &\cdots & a_{2n} & c_{21} & c_{22} & \cdots & c_{2n}\\
\cdot & \cdot & \cdot & \cdot & \cdot &\cdot & \cdot & \cdot\\
a_{n1}&a_{n2} &\cdots & a_{nn} & c_{n1} & c_{n2} & \cdots & c_{nn} \\
-1& 0 & \cdots & 0 & 0 & 0 & \cdots & 0\\
0 & -1 & \cdots & 0 & 0 & 0 & \cdots & 0\\
\cdot & \cdot & \cdot & \cdot & \cdot &\cdot & \cdot & \cdot\\
0 & 0 & \cdots & -1 & 0 & 0 & \cdots & 0
\end{vmatrix}$$ Снова вычислим определитель $\Delta$, разложением по последним $n$ столбцам. В этом случае отличным от нуля минором $n-$го порядка будет определитель матрицы $C$. Поэтому $\Delta= \det C\cdot\det\left (-E\right )=\det C\cdot\left ( -1 \right )^{n}\cdot\left (-1\right )^{S_1+S_2},$ где $$S_1=\sum_{k=n+1}^{2n}k, \textrm{ a } S_2=\sum_{k=1}^{n}k.$$ В результате получаем $\Delta=\det C\cdot\left ( -1 \right )^{2n\left ( n^{2}+n \right )}=\det C.$ Теперь, подставляя имеем доказательство теоремы: $$\Delta=\det C=\det (A \cdot B)=\det (A) \cdot \det (B).$$

Замечание Известно, что произведение матриц в общем случае не коммутативно, т.е. $AB \neq BA$. Но определитель это действительное число, а произведение действительных чисел коммутативно. Следовательно, $$\det(AB) = \det A \cdot \det B = \det B\cdot\det A = \det(BA)$$

Теорема об умножении определителей является следствием формулы Бине-Коши. Это теорема об определителе произведения прямоугольных матриц, в случае если это произведение дает квадратную матрицу. Справедлива для матриц с элементами любого коммутативного кольца.

Теорема (формула Бине-Коши). Пусть даны две матрицы $A$ и $B$ размеров $\left ( m\times n \right )$ и $\left ( n\times m \right )$ соответственно. Определитель матрицы равен нулю, если $m > n$, и равен сумме произведений всех соответствующих миноров $m$-го порядка мaтрицы $A$ на соответствующие миноры $m$-го порядка матрицы $B$, если $m \leqslant n$. Миноры матриц $A$ и $B$ одинакового порядка, равного наименьшему из чисел n и m, называются соответствующими друг другу, если они стоят в столбцах матрицы $A$ и строках матрицы $B$ с одинаковыми номерами: $$\det AB=\sum_{\gamma_1<\gamma_2<\cdots<\gamma_m }A_{\gamma_1<\gamma_2<\cdots<\gamma_m }B_{\gamma_1<\gamma_2<\cdots<\gamma_m },$$
где $A_{\gamma_1<\gamma_2<\cdots<\gamma_m }$ — минор матрицы $A$, составленный из столбцов с номерами $\gamma_1<\gamma_2<\cdots<\gamma_m$, и $B_{\gamma_1<\gamma_2<\cdots<\gamma_m }$ — минор матрицы $B$, составленный из строк с номерами $\gamma_1<\gamma_2<\cdots<\gamma_m$.

Допустим $C=AB$, $c_{ij}=\sum_{\gamma=1}^{m}{a_{i\gamma }b_{\gamma i}}$. Значит $$\det C=\sum_{\sigma}{(-1)^\sigma} \sum_{\gamma_1}{a_{1\gamma_1}b_{\gamma_{1}\sigma(1)}}\ldots \sum_{\gamma_n}{a_{n\gamma_n}b_{\gamma_{n}\sigma(n)}}=$$ $$=\sum_{\gamma_1,\ldots,\gamma_n=1}^{m}{a_{1\gamma_{1}}}\ldots a_{n_n}\sum_{\sigma}{(-1)^\sigma}b_{\gamma_1\sigma(1)}\ldots b_{\gamma_n\sigma(n)}=\sum_{\gamma_1,\ldots,\gamma_n=1}{a_{1\gamma_{1}}\ldots a_{n\gamma_n} B^{\gamma_1\ldots \gamma_n}}.$$ Минор $B^{\gamma_1\ldots \gamma_n}$ не равен нулю только в том случае, когда $\gamma_1, \ldots, \gamma_n$ попарно различны, значит и суммировать можно по парно различные номера $\gamma_1, \ldots, \gamma_n$. Для любой перестановки $\tau$ этих номеров справедливо $B^{\tau(\gamma_1)\ldots\tau(\gamma_n)}=(-1)^{\tau}B^{\gamma_1\ldots\gamma_n},$ из чего следует $$\sum_{\gamma_1,\ldots,\gamma_n=1}{a_{1\gamma_{1}}\ldots a_{n\gamma_n} B_{\gamma_1\ldots \gamma_n}}=\sum_{\gamma_1<\gamma_2<\ldots<\gamma_n}{(-1)^\tau a_{1\tau(1)}\ldots a_{n\tau(n)}B_{\gamma_1\ldots\gamma_n}}=$$ $$ =\sum_{\gamma_1<\gamma_2<\ldots<\gamma_m}{A_{\gamma_1<\gamma_2<\ldots<\gamma_m}B_{\gamma_1<\gamma_2<\ldots<\gamma_m}}.$$

Примеры решения задач

Рассмотрим примеры решения задач связанных с рассмотренной теоремой. Читателю рекомендовано попытаться решить задачи самостоятельно, а затем сверить свое решение с приведенным ниже.

    1. Найти определитель произведения матриц: $$A=\begin{Vmatrix}3 & 4\\ 1 & -8\end{Vmatrix},
      B=\begin{Vmatrix}2 & 9\\ -1 & 5\end{Vmatrix}$$

      Решение

      Находим определители данных матриц второго порядка: $\begin{vmatrix}3 & -4\\ 1 & -6\end{vmatrix}=-18+4=-14
      $ и $\begin{vmatrix}2 & 7\\ 1 & 5\end{vmatrix}=10-7=3$. По теореме об определителе произведения матриц получаем: $$\det (A \cdot B)=\det \left (A \right ) \cdot \det \left ( B \right )=\left ( -14\right )\cdot\left ( 3 \right )=-42.$$ Вычислим этот же определитель, находя произведение матриц: $$A\cdot B=\begin{vmatrix}3 & -4\\ 1 & -6\end{vmatrix}\cdot\begin{vmatrix}2 & 7\\ 1 & 5\end{vmatrix}=\begin{vmatrix}2 & 1\\ -4 & -23\end{vmatrix}$$ Следовательно, $\det \left (A\cdot B\right )=-46+4=-42$. Результаты совпадают.

    2. Найти определитель матрицы пятого порядка: $$M=\begin{Vmatrix}
      1 & 2 & u & v & w\\3 & 4 & x & y & z\\0 & 0 & 3 & 2 & 1\\0 & 0 & 2 & 5 & 3\\0 & 0 & 3 & 4 & 2
      \end{Vmatrix}$$

      Решение

      Разобьём данную матрицу на 4 блока, $M=\begin{Vmatrix}A & B\\ O & C\end{Vmatrix}$ где $A=\begin{Vmatrix}1 & 2\\ 3 & 4\end{Vmatrix}$,
      $B=\begin{Vmatrix}u & v & w\\ x & y & z\end{Vmatrix}$, $O=\begin{Vmatrix}0 & 0 \\ 0 & 0\\ 0 & 0\end{Vmatrix}$, $C=\begin{Vmatrix}3 & 2 & 1\\ 2 & 5 & 3 \\3 & 4 & 2\end{Vmatrix}$.
      Представим блочную матрицу как произведение (в справедливости этого представления можно убедиться, найдя произведение по правилам умножения блочных матриц). $$D=\begin{Vmatrix}
      A & B\\C & D \end{Vmatrix} = \begin{Vmatrix} E_2 & O^T\\ O & C \end{Vmatrix} \cdot \begin{Vmatrix} E_2 & B\\ O & E_3 \end{Vmatrix} \cdot \begin{Vmatrix} A & O^T\\ O & E_3 \end{Vmatrix} ,$$ где $E_2,E_3$ — единичные матрицы соответствующих порядков.
      $\begin{vmatrix} A & O^T\\ O & E_3 \end{vmatrix} = \det A =\left | A \right |$, $\begin{vmatrix} E_2 & O^T\\ O & C \end{vmatrix} = \det C =\left | C \right|$.
      Матрица $\begin{Vmatrix} E_2 & B\\ O & E_3 \end{Vmatrix}$ — треугольная с единицами на главной диагонали, следовательно ее определитель равен $1$ По теореме об определителе произведения получаем:
      $$\begin{vmatrix} A & B\\ O & C \end{vmatrix}= \begin{vmatrix} E_2 & O^T\\ O & C \end{vmatrix}\ \cdot \begin{vmatrix} E_2 & B\\ O & E_3 \end{vmatrix}\ \cdot\begin{vmatrix} A & O^T\\ O & E_3
      \end{vmatrix}=\left | C \right |\cdot 1\cdot\left | A \right |=\left | A \right |\cdot\left | C \right |$$ Найдем $\det A$ и $\det C$. $\begin{vmatrix}1 & 2\\ 3 & 4\end{vmatrix}=-2$ $\begin{vmatrix}3 & 2 & 1\\ 2 & 5 & 3 \\3 & 4 & 2\end{vmatrix}=-15-8-36+30+18=-3$. Подставляя, получаем, $\det M=-2\cdot -3=-6$

    3. Представьте в виде определителя произведение определителей: $$\begin{vmatrix} 2 & 1 & 1 & 1\\ -1& 2 & 1 & 1\\ -1& -1& 2 & 1\\ -1&-1&-1& 2 \end{vmatrix}\cdot \begin{vmatrix} 4& 1\\ 1& 4 \end{vmatrix}\cdot\begin{vmatrix} -3 & 1\\ -1 & 3 \end{vmatrix}$$
      Решение

      По теореме об определителе ступенчатой матрицы имеем:
      $$\begin{vmatrix} 4& 1\\ 1& 4 \end{vmatrix}\cdot\begin{vmatrix} -3 & 1\\ -1 & 3 \end{vmatrix}=\begin{vmatrix} 4 & 1 & 0 & 0\\ 1 & 4 & 0 & 0\\ 0 & 0 & -3 & 1\\ 0 & 0 & -1 & 3 \end{vmatrix}$$ Предположим $$A=\begin{Vmatrix} 2 & 1 & 1 & 1\\ -1& 2 & 1 & 1\\ -1& -1& 2 & 1\\ -1&-1&-1& 2 \end{Vmatrix}, B=\begin{Vmatrix}
      4 & 1 & 0 & 0\\ 1 & 4 & 0 & 0\\ 0 & 0 & -3 & 1\\ 0 & 0 & -1 & 3
      \end{Vmatrix},$$
      тогда $$AB=\begin{Vmatrix} 9 & 6 & -4 & 4\\ -2 & 7 & -4 & 4\\ -5 & -5 & -7 & 5\\ -5 & -5 & 1 & 5 \end{Vmatrix},$$ по теореме об определителе произведения получаем искомый определитель $$\det
      (A\cdot B)=\begin{vmatrix} 9 & 6 & -4 & 4\\ -2 & 7 & -4 & 4\\ -5 & -5 & -7 & 5\\ -5 & -5 & 1 & 5 \end{vmatrix}.$$

Литература

  1. Белозеров Г.С. Конспект лекций по линейной алгебре.
  2. В.А. Ильин, Э.Г. Позняк. Линейная алгебра; 5-е изд., стереотипное. ФИЗМАТЛИТ. — 2002. С. 38-39
  3. А.И. Кострикин. Введение в алгебру. Основы алгебры С.138-139
  4. Курош А.Г. Курс высшей алгебры М.: Наука, 1968, С.93-95
  5. Фаддеев Д. К. Лекции по алгебре: Учебное пособие для вузов.— M.: Наука. Главная редакция физико-математической литературы, 1984.— 416 с. C. 130-134

Теорема об умножении определителей

Тест на знание темы «Теорема об умножении определителей».

Основная теорема арифметики

Теорема. Любое натуральное число больше единицы может быть разложено в виде простых множителей и это разложение единственно (если не учитывать порядок множителей).

Докажем существование такого разложения и то, что оно единственно.

Существование. Пусть $n \in N, n > 1$ и мы имеем два варианта.Если $n$ простое, и тогда разложение уже получено, либо $n$ составное, а значит может быть представлено в виде $n=p_{0}a_{0}$, где $p_0$ — наименьший делитель $n$. Допустим $a_{0}>1$, а значит у нас снова два варианта. Либо $a_{0}$ — простое, либо оно составное и может быть представлено как $a_{0}=p_{1}a_{1}$, где $p_1$ — наименьший делитель $a_{0}$. Таким образом мы дойдем до $a_{m-1}=p_{m}a_{m}$, где $a_{m}=1$. Тогда $n=p_{0}p_{1}p_{2}\ldots p_{m}$, где $p_{i}, i=\overline{0, m}$ является простым по лемме (1) о простоте наименьшего делителя.

Единственность. Пусть существуют два разложения числа $n\in N, n > 1$ на простые множители. Тогда $p_{1}p_{2}\ldots p_{n}=q_{1}q_{2}\ldots q_{m}$. Так как $p_{1}p_{2}\ldots p_{n}$ разложение $n$, а значит является его делителем, то $p_{1} \mid q_{1}q_{2}\ldots q_{m}$. Если точнее, оно делит $q_{j}, j= \overline{1, m}$.Но так как $q_{j}$ и $p_{1}$ — простые, то это возможно только в том случае, если $p_{1}=q_{i}$. Так как порядок множителей не имеет значения, пусть это будет $q_{1}$. И тогда мы можем сократить равенство на $p_{1}$ и получим $p_{2}\ldots p_{n}=q_{2}\ldots q_{m}$. Повторяя рассуждения, мы придем к тому, что кончатся множители одного разложения (предположим что $n < m$) и мы получим такое равенство $1= q_{n}q_{n+1} \ldots q_{m}$. Однако, так как все множители — простые, а значит (по определению простого числа) найдено противоречие. Это доказывает единственность.

Так как в разложении целого числа могут оказаться одинаковые множители, то можно обозначить количество вхождений множителя его степенью : $$n=p^{a_{1}}_{1}p^{a_{2}}_{2}\ldots p^{a_{n}}_{n}, $$ где $p_{i} \neq p_{j}$ при $i, j = \overline{1, n}, i \neq j$. Это называется каноническим разложением числа.

Примеры
  1. Каноническим разложением числа $100$ будет $2^{2} \cdot 5^{2}$.
  2. Каноническим разложением числа $255$ будет $3^{1} \cdot 5^{1} \cdot 17^{1}$.
  3. Каноническим разложением числа $53$ будет $53^{1}$.

Тест на канонические разложения

Тест для проверки понимания изложенной выше темы.

Литература

  1. Электронный конспект по алгебре. Автор Белозеров.Г.С.
  2. И.М.Виноградов. Основы теории чисел. 6-ое издание, 1952 год. стр.20-22.
  3. Д.К.Фадеев. Лекции по алгебре. 1984 год. стр. 14-15.

Критерий совместности СЛАУ Кронекера-Капелли

Теорема Кронекера-Капелли. Критерий совместности системы линейных алгебраических уравнений. СЛАУ совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы. То есть, если в СЛАУ $r=\operatorname{rang}A=\operatorname{rang}\widetilde{A}$, где $\operatorname{rang}A$ — обозначает ранг матрицы системы, а $\operatorname{rang}\widetilde{A}$ — ранг расширенной матрицы, тогда данная матрица совместна, причём система имеет единственное решение, если $\operatorname{rang}A=\operatorname{rang}\widetilde{A}=n$, где $n$ — число неизвестных, и бесконечное число решений, если $\operatorname{rang}A=\operatorname{rang}\widetilde{A}<n$.

Необходимость. Пусть задана расширенная матрица $\widetilde{A}$:

$\widetilde{A}=\left\{\begin{matrix}
a_{11}x_{1} \; + \; a_{12}x_{2} \; + \; \cdots \; + \; a_{1n}x_{n} \; = \; b_{1}
\\a_{21}x_{1} \; + \; a_{22}x_{2} \; + \; \cdots \; + \; a_{2n}x_{n} \; = \; b_{2}
\\ \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots
\\a_{m1}x_{1} \; + \; a_{m2}x_{2} \; + \; \cdots \; + \; a_{mn}x_{n} \; = \; b_{m}
\end{matrix}\right.$

Скажем, что данная система совместна, в таком случае существуют числа $\left(c_{1},c_{2},\dots,c_{n}\right)$, которые являются частным решением матрицы, при подстановке их в систему. Мы получим равенство:

$\begin{Vmatrix} b_{1}\\ b_{2} \\ \vdots \\ b_{n}\\ \end{Vmatrix} =
c_{1}\begin{Vmatrix} a_{11}\\ a_{21} \\\vdots\\ a_{m1} \end{Vmatrix} +
c_{2}\begin{Vmatrix} a_{12}\\ a_{22} \\\vdots\\ a_{m2} \end{Vmatrix} + \dots+
c_{n}\begin{Vmatrix} a_{1n}\\ a_{2n} \\\vdots\\ a_{mn} \end{Vmatrix}
$

Следовательно, вектор-столбец свободных членов является линейной комбинацией столбцов $\left(a_{1},a_{2},\dots,a_{n}\right),$ матрицы $A.$ Так же, мы можем заметить, что сколько бы мы раз не приписали или не вычеркнули строку(столбец), от этого не меняется ранг системы, из этого следует, что $\operatorname{rang}A=\operatorname{rang}\widetilde{A}$.

Достаточность. Если $\operatorname{rang}A=\operatorname{rang}\widetilde{A}$, то это означает, что у них один и тот же базисный минор. Тогда, согласно теореме о базисном миноре, последний столбец свободных членов – линейная комбинация столбцов базисного минора.

Следствие:

  1. $\operatorname{rang}A=\operatorname{rang}\widetilde{A}=n$ единственное решение.
  2. $\operatorname{rang}A=\operatorname{rang}\widetilde{A}<n$ бесконечное число решений.
  3. Количество главных переменных равно рангу системы.

Примеры решения задач

Рассмотрим примеры задач, в которых используеться критерий совместности $\operatorname{rang}A=\operatorname{rang}\widetilde{A}.$

  1. $ \left\{\begin{matrix}
    2x_{1} \; — \; x_{2} \; + \; 5x_{3} \; = \; 4
    \\3x_{1} \; — \; x_{2} \; + \; 5x_{3} \; = \; 0
    \\5x_{1} \; — \; 2x_{2} \; + \; 3x_{3} \; = \; 2
    \end{matrix}\right.$

    Решение

    Сначала, приведем матрицу к треугольному виду.

    $\left(\begin{matrix} 2 & -1 & 5 & 4 \\ 3 & -1 & 5 & 0 \\ 5 & -2 & 3 & 2 \end{matrix} \right)\sim
    \left(\begin{matrix} -1 & 2 & 5 & 4\\ -1 & 3 & 5 & 0 \\ -2 & 5 & 3 & 2 \end{matrix} \right)\sim$

    $\left(\begin{matrix} -1 & 1 & 5 & 4\\ 0 & 1 & 0 & -4 \\ 0 & 1 & -7 & -7 \end{matrix} \right)\sim
    \left(\begin{matrix} -1 & 1 & 5 & 4\\ 0 & 1 & 0 & -4 \\ 0 & 0 & -7 & -3 \end{matrix} \right)$

    Элементарные преобразования не меняют ранга матриц, поэтому в результате выполненных действий, получены эквивалентные исходнной матрице системы $A=\left(\begin{matrix} -1 & 1 & 5 \\ 0 & 1 & 0 \\ 0 & 0 & -7\end{matrix}\right)$ и расширенная матрица системы $\widetilde{A}=\left(\begin{matrix} -1 & 1 & 5 & 4\\ 0 & 1 & 0 & -4 \\ 0 & 0 & -7 & -3 \end{matrix} \right)$

    $\operatorname{rang}A=\operatorname{rang}\widetilde{A}=3$ значит, по теореме Кронекера-Капелли система совместна.

  2. $\left\{\begin{matrix}
    x_{1} \; + \; x_{2} \; — \; x_{3} \; = \; 7
    \\x_{1} \; + \; 2x_{2} \; — \; 3x_{3} \; = \; 1
    \\-2x_{1} \; — \; 2x_{3} \; = \; 3
    \end{matrix}\right.$

    Решение

    Приведем матрицу к ступенчистому виду:

    $\left(\begin{matrix} 1 & 1 & -1 & -4 \\ 1 & 2 & -3 & 0 \\ -2 & 0 & -2 & 3 \end{matrix} \right)\sim \left(\begin{matrix} 1 & 1 & -1 & -4 \\ 0 & 1 & -2 & 4 \\ 0 & 2 & -4 & -5 \end{matrix} \right)\sim \left(\begin{matrix} 1 & 1 & -1 & -4 \\ 0 & 1 & -2 & 4 \\ 0 & 0 & 0 & -13 \end{matrix} \right)$

    $\Rightarrow \widetilde{A}=\left(\begin{matrix} 1 & 1 & -1 & -4 \\ 0 & 1 & -2 & 4 \\ 0 & 0 & 0 & -13 \end{matrix} \right)=\operatorname{rang}\widetilde{A}=3$

    $\Rightarrow A=\left(\begin{matrix} 1 & 1 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{matrix} \right)=\operatorname{rang}A=2$

    $\operatorname{rang}A\neq \operatorname{rang}\widetilde{A}$. По теореме Кронекера-Капелли система линейных уравнений несовместна.

  3. $\left\{\begin{matrix}
    5x_{1} \; — \; 3x_{2} \; + \; 2x_{3} \; + \; 4x_{4} = \; 3
    \\4x_{1} \; — \; 2x_{2} \; + \; 3x_{3} \; + \; 7x_{4} = \; 1
    \\8x_{1} \; — \; 6x_{2} \; — \; x_{3} \; — \; 5x_{4} = \; 9
    \\7x_{1} \; — \; 3x_{2} \; + \; 7x_{3} \; + \; 17x_{4} = \; \lambda
    \end{matrix}\right.$

    Решение

    Очевидно, что от значения $\lambda$ зависит, будет ли матрица совместна или нет.

    Сначала приведем матрицу к треугольному ввиду:

    $\widetilde{A}=\left(\begin{matrix} 5 & -3 & 2 & 4 & 3\\ 4 & -2 & 3 & 7 & 1\\ 8 & -6 & -1 & -5 & 9 \\ 7 & -3 & 7 & 17 & \lambda \end{matrix} \right)\sim
    \left(\begin{matrix} 1 & -1 & -1 & -3 & 2\\ 4 & -2 & 3 & 7 & 1\\ 0 & -2 & -7 & -19 & 7 \\ 7 & -3 & 7 & 17 & \lambda \end{matrix} \right)\sim$

    $\left(\begin{matrix} 1 & -1 & -1 & -3 & 2\\ 0 & 2 & 7 & 19 & -7\\ 0 & -2 & -7 & -19 & 7 \\ 0 & 4 & 14 & 38 & \lambda — 14 \end{matrix} \right)\sim\left(\begin{matrix} 1 & -1 & -1 & -3 & 2\\ 0 & 2 & 7 & 19 & -7\\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \lambda \end{matrix} \right)$

    При $\lambda\neq0$: $\operatorname{rang}\widetilde{A}=3$, $\operatorname{rang}A=2$. По теореме Кронекера-Капелли система линейных уравнений несовместна.

    При $\lambda=0$: $\operatorname{rang}\widetilde{A}=2$, $\operatorname{rang}A=2$. По теореме Кронекера-Капелли система линейных уравнений совместна.

Критерий совместности СЛАУ Кронекера-Капелли

Тест на закрепление материала «Критерий совместности СЛАУ Кронекера-Капелли».

Литература

  1. Личный конспект, составленный на основе лекций Белозерова Г.С.
  2. Фадеев Д.К. Лекции по алгебре. М.: Наука, 1984.-416 с.  стр 119.
  3. Проскуряков И.В. Сборник задач по линейной алгебре. М.: Наука, 1984.-384 с.  стр 101-103.

Теорема об аддитивной группе матриц

Теорема. Пусть $ M_{m\times n} \left ( P\right )$ — множество матриц размеров $m\times n$ над полем $P,$ «$+$» — операция сложения матриц. Тогда пара $\left ( M_{m\times n} \left ( P \right ),\,+\right )$ — абелева группа.

Для доказательства теоремы необходимо проверить аксиомы группы и коммутативность операции сложения матриц.

Для записи аксиом и свойств в общем виде будем использовать следующие обозначения:

Ассоциативность

В общем виде аксиома ассоциативности группы выглядит так: $$\forall g_{1},\,g_{2},\,g_{3}\in G\;\left (g_{1}\ast g_{2}\right )\ast g_{3}=g_{1}\ast \left (g_{2}\ast g_{3}\right ).$$ Запишем ее для множества матриц размеров $m\times n:$ $$\forall A,B,C\in M_{m\times n}\left ( P \right )\;\left ( A+B \right )+C=A+\left ( B+C \right ).$$

Пусть $$A=\left(\begin{matrix}a_{11}&a_{12} & \cdots &a_{1n} \\a_{21}&a_{22} & \cdots &a_{2n}\\\cdot &\cdot &\cdot &\cdot \\a_{m1}&a_{m2}&\cdots &a_{mn} \end{matrix}\right),\; B=\left(\begin{matrix}b_{11}&b_{12} & \cdots &b_{1n} \\b_{21}&b_{22} & \cdots &b_{2n}\\\cdot &\cdot &\cdot &\cdot \\b_{m1}&b_{m2}&\cdots &b_{mn} \end{matrix}\right),$$ $$C=\left(\begin{matrix}c_{11}&c_{12} & \cdots &c_{1n} \\c_{21}&c_{22} & \cdots &c_{2n}\\\cdot &\cdot &\cdot &\cdot \\c_{m1}&c_{m2}&\cdots &c_{mn} \end{matrix}\right);$$ $$\left (A+B\right )+C=\left( \left(\begin{matrix}a_{11}&a_{12} & \cdots &a_{1n} \\a_{21}&a_{22} & \cdots &a_{2n}\\\cdot &\cdot &\cdot &\cdot \\a_{m1}&a_{m2}&\cdots &a_{mn} \end{matrix}\right)+\left(\begin{matrix}b_{11}&b_{12} & \cdots &b_{1n} \\b_{21}&b_{22} & \cdots &b_{2n}\\\cdot &\cdot &\cdot &\cdot \\b_{m1}&b_{m2}&\cdots &b_{mn} \end{matrix}\right) \right) +$$ $$+\left(\begin{matrix}c_{11}&c_{12} & \cdots &c_{1n} \\c_{21}&c_{22} & \cdots &c_{2n}\\\cdot &\cdot &\cdot &\cdot \\c_{m1}&c_{m2}&\cdots &c_{mn}\end{matrix}\right)=\left(\begin{matrix}a_{11}+b_{11}&a_{12}+b_{12} & \cdots &a_{1n}+b_{1n} \\a_{21}+b_{21}&a_{22}+b_{22} & \cdots &a_{2n}+b_{2n}\\\cdot &\cdot &\cdot &\cdot \\a_{m1}+b_{m1}&a_{m2}+b_{m2}&\cdots &a_{mn}+b_{mn}\end{matrix}\right)+$$ $$+\left(\begin{matrix}c_{11}&c_{12} & \cdots &c_{1n} \\c_{21}&c_{22} & \cdots &c_{2n}\\\cdot &\cdot &\cdot &\cdot \\c_{m1}&c_{m2}&\cdots &c_{mn} &\end{matrix}\right)=$$ $$=\left(\begin{matrix}a_{11}+b_{11}+c_{11}&a_{12}+b_{12}+c_{12} & \cdots &a_{1n}+b_{1n}+c_{1n} \\a_{21}+b_{21}+c_{21}&a_{22}+b_{22}+c_{22} & \cdots &a_{2n}+b_{2n}+c_{2n}\\\cdot &\cdot &\cdot &\cdot \\a_{m1}+b_{m1}+c_{m1}&a_{m2}+b_{m2}+c_{m2}&\cdots &a_{mn}+b_{mn}+c_{mn} \end{matrix}\right);$$ $$A+\left ( B+C \right )=\left(\begin{matrix}a_{11}&a_{12} & \cdots &a_{1n} \\a_{21}&a_{22} & \cdots &a_{2n}\\\cdot &\cdot &\cdot &\cdot \\a_{m1}&a_{m2}&\cdots &a_{mn} \end{matrix}\right)+$$ $$+\left(\left(\begin{matrix}b_{11}&b_{12} & \cdots &b_{1n} \\b_{21}&b_{22} & \cdots &b_{2n}\\\cdot &\cdot &\cdot &\cdot \\b_{m1}&b_{m2}&\cdots &b_{mn} \end{matrix}\right)+\left(\begin{matrix}c_{11}&c_{12} & \cdots &c_{1n} \\c_{21}&c_{22} & \cdots &c_{2n}\\\cdot &\cdot &\cdot &\cdot \\c_{m1}&c_{m2}&\cdots &c_{mn} \end{matrix}\right) \right)=$$ $$=\left(\begin{matrix}a_{11}&a_{12} & \cdots &a_{1n} \\a_{21}&a_{22} & \cdots &a_{2n}\\\cdot &\cdot &\cdot &\cdot \\a_{m1}&a_{m2}&\cdots &a_{mn} \end{matrix}\right)+\left(\begin{matrix}b_{11}+c_{11}&b_{12}+c_{12} & \cdots &b_{1n}+c_{1n} \\b_{21}+c_{21}&b_{22}+c_{22} & \cdots &b_{2n}+c_{2n}\\\cdot &\cdot &\cdot &\cdot \\b_{m1}+c_{m1}&b_{m2}+c_{m2}&\cdots &b_{mn}+c_{mn} \end{matrix}\right)=$$ $$=\left(\begin{matrix}a_{11}+b_{11}+c_{11}&a_{12}+b_{12}+c_{12} & \cdots &a_{1n}+b_{1n}+c_{1n} \\a_{21}+b_{21}+c_{21}&a_{22}+b_{22}+c_{22} & \cdots &a_{2n}+b_{2n}+c_{2n}\\\cdot &\cdot &\cdot &\cdot\\a_{m1}+b_{m1}+c_{m1}&a_{m2}+b_{m2}+c_{m2}&\cdots &a_{mn}+b_{mn}+c_{mn} \end{matrix}\right).$$

$\left ( A+B \right )+C=A+\left ( B+C \right )\Rightarrow $ операция ассоциативна.

Аксиома нейтрального элемента

В общем виде аксиома нейтрального элемента группы выглядит так: $$\exists e\in G:\;\forall g\in G\;g\ast e=e\ast g=g.$$ Запишем ее для множества матриц размеров $m\times n:$ $$\exists O\in M_{m\times n}\left ( P \right ):\;\forall A\in M_{m\times n}\left ( P \right )\;A+O=O+A=A.$$ В нашем случае нейтральным элементом является нулевая матрица $O\in M_{m\times n}\left ( P \right ).$

Пусть $$A=\left(\begin{matrix}a_{11}&a_{12} & \cdots &a_{1n} \\a_{21}&a_{22} & \cdots &a_{2n}\\\cdot &\cdot &\cdot &\cdot \\a_{m1}&a_{m2}&\cdots &a_{mn} \end{matrix}\right),\; O =\left(\begin{matrix}0&0 & \cdots &0 \\0&0 & \cdots &0\\\cdot &\cdot &\cdot &\cdot \\0&0&\cdots &0 \end{matrix}\right).$$$$A+O=\left(\begin{matrix}a_{11}&a_{12} & \cdots &a_{1n} \\a_{21}&a_{22} & \cdots &a_{2n}\\\cdot &\cdot &\cdot &\cdot \\a_{m1}&a_{m2}&\cdots &a_{mn} \end{matrix}\right)+\left(\begin{matrix}0&0 & \cdots &0 \\0&0 & \cdots &0\\\cdot &\cdot &\cdot &\cdot \\0&0&\cdots &0 \end{matrix}\right)=$$ $$=\left(\begin{matrix}a_{11}+0&a_{12}+0 & \cdots &a_{1n}+0 \\a_{21}+0&a_{22}+0 & \cdots &a_{2n}+0\\\cdot &\cdot &\cdot &\cdot \\a_{m1}+0&a_{m2}+0&\cdots &a_{mn}+0 \end{matrix}\right)=\left(\begin{matrix}a_{11}&a_{12} & \cdots &a_{1n} \\a_{21}&a_{22} & \cdots &a_{2n}\\\cdot &\cdot &\cdot &\cdot \\a_{m1}&a_{m2}&\cdots &a_{mn} \end{matrix}\right)=A.$$ $$O+A=\left(\begin{matrix}0&0 & \cdots &0 \\0&0 & \cdots &0\\\cdot &\cdot &\cdot &\cdot \\0&0&\cdots &0 \end{matrix}\right)+\left(\begin{matrix}a_{11}&a_{12} & \cdots &a_{1n} \\a_{21}&a_{22} & \cdots &a_{2n}\\\cdot &\cdot &\cdot &\cdot \\a_{m1}&a_{m2}&\cdots &a_{mn} \end{matrix}\right)=$$ $$=\left(\begin{matrix}0+a_{11}&0+a_{12} & \cdots &0+a_{1n} \\0+a_{21}&0+a_{22} & \cdots &0+a_{2n}\\\cdot &\cdot &\cdot &\cdot \\0+a_{m1}&0+a_{m2}&\cdots &0+a_{mn} \end{matrix}\right)=\left(\begin{matrix}a_{11}&a_{12} & \cdots &a_{1n} \\a_{21}&a_{22} & \cdots &a_{2n}\\\cdot &\cdot &\cdot &\cdot \\a_{m1}&a_{m2}&\cdots &a_{mn} \end{matrix}\right)=A.$$

$A+O=O+A=A\Rightarrow $ $O$ — нейтральный элемент.

Аксиома симметричных элементов

В общем виде аксиома симметричных элементов группы выглядит так: $$\forall g\in G\;\exists{g}’\in G:\;g\ast{g}’={g}’\ast g=e.$$ Запишем ее для множества матриц размеров $m\times n:$ $$\forall A\in M_{m\times n}\left ( P \right )\;\exists\left ( -A \right )\in M_{m\times n}\left ( P \right ):\;A+\left ( -A \right )=-A+A=O.$$

Пусть $$A=\left(\begin{matrix}a_{11}&a_{12} & \cdots &a_{1n} \\a_{21}&a_{22} & \cdots &a_{2n}\\\cdot &\cdot &\cdot &\cdot \\a_{m1}&a_{m2}&\cdots &a_{mn} \end{matrix}\right);$$ $$-A=-\left(\begin{matrix}a_{11}&a_{12} & \cdots &a_{1n} \\a_{21}&a_{22} & \cdots &a_{2n}\\\cdot &\cdot &\cdot &\cdot \\a_{m1}&a_{m2}&\cdots &a_{mn} \end{matrix}\right)=\left(\begin{matrix}-a_{11}&-a_{12} & \cdots &-a_{1n} \\-a_{21}&-a_{22} & \cdots &-a_{2n}\\\cdot &\cdot &\cdot &\cdot \\-a_{m1}&-a_{m2}&\cdots &-a_{mn} \end{matrix}\right).$$ $$A+\left ( -A \right )=\left(\begin{matrix}a_{11}&a_{12} & \cdots &a_{1n} \\a_{21}&a_{22} & \cdots &a_{2n}\\\cdot &\cdot &\cdot &\cdot \\a_{m1}&a_{m2}&\cdots &a_{mn} \end{matrix}\right)+\left(\begin{matrix}-a_{11}&-a_{12} & \cdots &-a_{1n} \\-a_{21}&-a_{22} & \cdots &-a_{2n}\\\cdot &\cdot &\cdot &\cdot \\-a_{m1}&-a_{m2}&\cdots &-a_{mn} \end{matrix}\right)=$$ $$=\left(\begin{matrix}a_{11}-a_{11}&a_{12}-a_{12} & \cdots &a_{1n}-a_{1n} \\a_{21}-a_{21}&a_{22}-a_{22} & \cdots &a_{2n}-a_{2n}\\\cdot &\cdot &\cdot &\cdot \\a_{m1}-a_{m1}&a_{m2}-a_{m2}&\cdots &a_{mn}-a_{mn} \end{matrix}\right)=\left(\begin{matrix}0&0 & \cdots &0 \\0&0 & \cdots &0\\\cdot &\cdot &\cdot &\cdot \\0&0&\cdots &0 \end{matrix}\right)=O;$$$$-A+A=\left(\begin{matrix}-a_{11}&-a_{12} & \cdots &-a_{1n} \\-a_{21}&-a_{22} & \cdots &-a_{2n}\\\cdot &\cdot &\cdot &\cdot \\-a_{m1}&-a_{m2}&\cdots &-a_{mn} \end{matrix}\right)+\left(\begin{matrix}a_{11}&a_{12} & \cdots &a_{1n} \\a_{21}&a_{22} & \cdots &a_{2n}\\\cdot &\cdot &\cdot &\cdot \\a_{m1}&a_{m2}&\cdots &a_{mn} \end{matrix}\right)=$$ $$=\left(\begin{matrix} -a_{11}+a_{11}&-a_{12}+a_{12} & \cdots &-a_{1n}+a_{1n} \\-a_{21}+a_{21}&-a_{22}+a_{22} & \cdots &-a_{2n}+a_{2n}\\\cdot &\cdot &\cdot &\cdot \\-a_{m1}+a_{m1}& -a_{m2}+a_{m2}&\cdots &-a_{mn}+a_{mn} \end{matrix}\right)=\left(\begin{matrix}0&0 & \cdots &0 \\0&0 & \cdots &0\\\cdot &\cdot &\cdot &\cdot \\0&0&\cdots &0 \end{matrix}\right)=O.$$

$A+\left ( -A \right )=-A+A=O \Rightarrow$ $A$ и $-A$ — симметричные элементы.

Коммутативность

Проверив все аксиомы, мы доказали, что $\left ( M_{m\times n} \left ( P \right ),\,+\right )$ — группа. Чтобы доказать, что она абелева, проверим коммутативность опреации.

Общий вид: $$\forall g_{1},g_{2}\in G\;g_{1}\ast g_{2}=g_{2}\ast g_{1}.$$ Для множества матриц размеров $m\times n:$ $$\forall A,B\in M_{m\times n}\left ( P \right )\;A+B=B+A.$$

Пусть $$A=\left(\begin{matrix}a_{11}&a_{12} & \cdots &a_{1n} \\a_{21}&a_{22} & \cdots &a_{2n}\\\cdot &\cdot &\cdot &\cdot \\a_{m1}&a_{m2}&\cdots &a_{mn} \end{matrix}\right),\; B=\left(\begin{matrix}b_{11}&b_{12} & \cdots &b_{1n} \\b_{21}&b_{22} & \cdots &b_{2n}\\\cdot &\cdot &\cdot &\cdot \\b_{m1}&b_{m2}&\cdots &b_{mn} \end{matrix}\right);$$ $$A+B=\left(\begin{matrix}a_{11}&a_{12} & \cdots &a_{1n} \\a_{21}&a_{22} & \cdots &a_{2n}\\ \cdot &\cdot &\cdot &\cdot \\a_{m1}&a_{m2}&\cdots &a_{mn} \end{matrix}\right)+\left(\begin{matrix}b_{11}&b_{12} & \cdots &b_{1n} \\b_{21}&b_{22} & \cdots &b_{2n}\\\cdot &\cdot &\cdot &\cdot \\b_{m1}&b_{m2}&\cdots &b_{mn} \end{matrix}\right)=$$ $$=\left(\begin{matrix}a_{11}+b_{11}&a_{12}+b_{12} & \cdots &a_{1n}+b_{1n} \\a_{21}+b_{21}&a_{22}+b_{22} & \cdots &a_{2n}+b_{2n}\\\cdot &\cdot &\cdot &\cdot \\a_{m1}+b_{m1}&a_{m2}+b_{m2}&\cdots &a_{mn}+b_{mn}\end{matrix}\right);$$ $$B+A=\left(\begin{matrix}b_{11}&b_{12} & \cdots &b_{1n} \\b_{21}&b_{22} & \cdots &b_{2n}\\\cdot &\cdot &\cdot &\cdot \\b_{m1}&b_{m2}&\cdots &b_{mn} \end{matrix}\right)+\left(\begin{matrix}a_{11}&a_{12} & \cdots &a_{1n} \\a_{21}&a_{22} & \cdots &a_{2n}\\\cdot &\cdot &\cdot &\cdot \\a_{m1}&a_{m2}&\cdots &a_{mn} \end{matrix}\right)=$$ $$=\left(\begin{matrix}b_{11}+a_{11}&b_{12}+a_{12} & \cdots &b_{1n}+a_{1n} \\b_{21}+a_{21}&b_{22}+a_{22} & \cdots &b_{2n}+a_{2n}\\\cdot &\cdot &\cdot &\cdot \\b_{m1}+a_{m1}&b_{m2}+a_{m2}&\cdots &b_{mn}+a_{mn} \end{matrix}\right)=$$ $$=\left(\begin{matrix}a_{11}+b_{11}&a_{12}+b_{12} & \cdots &a_{1n}+b_{1n} \\a_{21}+b_{21}&a_{22}+b_{22} & \cdots &a_{2n}+b_{2n}\\\cdot &\cdot &\cdot &\cdot \\a_{m1}+b_{m1}&a_{m2}+b_{m2}&\cdots &a_{mn}+b_{mn}\end{matrix}\right).$$

$A+B=B+A\Rightarrow$ операция коммутативна.

Доказав три аксиомы группы и коммутативность, мы доказали теорему об аддитивной группе матриц.

Литература

  1. Белозеров Г.С. Конспект лекций по линейной алгебре.
  2. Воеводин В.В. Линейная алгебра. М.: Наука, 1980.-400 с., стр. 23-26
  3. Фадеев Д.К. Лекции по алгебре. М.: Наука, 1984.-416 с., стр. 242-244

Теорема Лапласа (без доказательства)

Итак, прежде чем перейти к методу использования теоремы Лапласа, необходимо рассмотреть несколько важных определений.

Определение Пусть дана матрица $A \in M_{m \times n}(P).$ Возьмем в ней любые $i$ строк и $i$ столбцов, причем $i > 0$ и $i$ меньше минимального из $m$ и $n.$ Элементы, которые располагаются на пересечении выбранных строк и столбцов, образуют матрицу $i-$го порядка. Определитель этой матрицы называется минором $i-$го порядка исходной матрицы. Если порядок минора равен единице, то минор является элементом исходной матрицы.

Пример 1 Пусть дан определитель четвертого порядка $$ \begin{vmatrix} -8 & -5 & 2 & 7 \\ 1 & 3 & -9 & -3 \\ 4 & -4 & -1 & 9 \\ -5 & 3 & -4 & 8 \end{vmatrix}.$$ Выберем, например, $2$-й и $4$-й столбцы и $1$-ю и $3$-ю строки. Таким образом, элементы, стоящие на пересечении этих столбцов и строк образуют минор $2-$го порядка: $$ \begin{vmatrix} -5 & 7 \\ -4 & 9 \end{vmatrix} = -45 + 28 = -17.$$ Также мы можем выбрать любые строки и столбцы для получения миноров.

Определение Пусть дана матрица $A \in M_m(P).$ Выберем в ней минор $i-$го порядка, такой, что $i > 0$ и $i < m.$ Если мы вычеркнем строки и столбцы матрицы, в которых лежит данный минор, то мы получим новую матрицу. Определитель новой матрицы называется дополнительным минором к исходному.

Пример 2 Возьмем определитель и его минор $2-$го порядка из первого примера. Дополнительным минором к нему будет $$ \begin{vmatrix} 1 & -9 \\ -5 & -4 \end{vmatrix} = -4-45 = -49.$$

Определение Пусть дана матрица $A \in M_m(P).$ Выберем в ней минор $i-$го порядка, такой, что $i > 0$ и $i < m.$ Если мы умножим дополнительный к нему минор на число $(-1)^{S_1 + S_2}$, в котором $S_1$ — это сумма номеров строк, а $S_2$ — это сумма номеров столбцов, в которых лежит исходный минор, то мы получим алгебраическое дополнение к этому минору.

Пример 3 Пусть дан определитель пятого порядка $$ \begin{vmatrix} -7 & 5 & 3 & -2 & 6 \\ 9 & -8 & 7 & 3 & -4 \\ 0 & 1 & -1 & -5 & 9 \\ -3 & 2 & -2 & -4 & -8 \\ 4 & 9 & 5 & -1 & 1 \end{vmatrix}.$$ Выберем в нем, к примеру $1-$ю и $4-$ю строки, а также $2-$й и $5-$й столбцы. Тогда на пересечении выбранных строк и столбцов образуется минор $2-$го порядка $$ \begin{vmatrix} 5 & 6 \\ 2 & -8 \end{vmatrix} = -40-12 = -52.$$ Дополнительным минором к нему будет $$ \begin{vmatrix} 9 & 7 & 3 \\ 0 & -1 & -5 \\ 4 & 5 & -1 \end{vmatrix} = 9 + 0-140 + 12 + 0 + 225 = 106.$$ Наконец, алгебраическим дополнением к минору будет $$ \begin{vmatrix} 9 & 7 & 3 \\ 0 & -1 & -5 \\ 4 & 5 & -1 \end{vmatrix} \cdot (-1)^{(1 + 4) + (2 + 5)} = 106 \cdot (-1)^{12} = 106,$$ где степени $-1$ являются таковыми, так как элементы минора исходного определителя располагаются в $1-$й и $4-$й строках и во $2-$м и в $5-$м столбцах.

Итак, разобравшись с приведенными выше определениями, можно приступать к формулированию теоремы.

Теорема (Лапласа) Если в определителе порядка $m$ выбрать $i$ строк (столбцов), где $i > 0$ и $i < m,$ то данный определитель будет равняться сумме миноров, которые расположены в этих строках (столбцах), умноженных на их алгебраические дополнения. Эти миноры будут иметь $i-$й порядок.

Таким образом, благодаря теореме Лапласа, при вычислении определителя $m-$го порядка, мы можем вычислить несколько определителей более малых порядков ($i$), что упрощает нам задачу.

Следствием (а также частным случаем, для которого $i = 1$) из теоремы Лапласа является Теорема о разложении определителя по строке.

Примеры решения задач

Пример 4 Найти определитель матрицы $4-$го порядка $$\begin{pmatrix} 3 & 5 & 6 & 9 \\ -1 & 7 & 2 & -5 \\ 0 & 4 & 1 & 2 \\ -3 & -6 & 5 & 0 \end{pmatrix}.$$ Разложим определитель этой матрицы по теореме Лапласа, выбрав $1-$ю и $3-$ю строки: $$\begin{vmatrix} 3 & 5 & 6 & 9 \\ -1 & 7 & 2 & -5 \\ 0 & 4 & 1 & 2 \\ -3 & -6 & 5 & 0 \end{vmatrix} = (-1)^{(1 + 3) + (1 + 2)} \cdot \begin{vmatrix} 3 & 5 \\ 0 & 4 \end{vmatrix} \cdot \begin{vmatrix} 2 & -5 \\ 5 & 0 \end{vmatrix} +$$ $$+ (-1)^{(1 + 3) + (1 + 3)} \cdot \begin{vmatrix} 3 & 6 \\ 0 & 1 \end{vmatrix} \cdot \begin{vmatrix} 7 & -5 \\ -6 & 0 \end{vmatrix} + (-1)^{(1 + 3) + (1 + 4)} \cdot \begin{vmatrix} 3 & 9 \\ 0 & 2 \end{vmatrix} \cdot \begin{vmatrix} 7 & 2 \\ -6 & 5 \end{vmatrix} +$$ $$+ (-1)^{(1 + 3) + (2 + 4)} \cdot \begin{vmatrix} 5 & 9 \\ 4 & 2 \end{vmatrix} \cdot \begin{vmatrix} -1 & 2 \\ -3 & 5 \end{vmatrix} + (-1)^{(1 + 3) + (3 + 4)} \cdot \begin{vmatrix} 6 & 9 \\ 1 & 2 \end{vmatrix} \cdot \begin{vmatrix} -1 & 7 \\ -3 & -6 \end{vmatrix} +$$ $$+ (-1)^{(1 + 3) + (2 + 3)} \cdot \begin{vmatrix} 5 & 6 \\ 4 & 1 \end{vmatrix} \cdot \begin{vmatrix} -1 & -5 \\ -3 & 0 \end{vmatrix} = (-1)^7 \cdot (12-0) \cdot (0 + 25) +$$ $$+ (-1)^8 \cdot (3-0) \cdot (0-30) + (-1)^9 \cdot (6-0) \cdot (35 + 12) +$$ $$+ (-1)^{10} \cdot (10-36) \cdot (-5 + 6) + (-1)^{11} \cdot (12-9) \cdot (6 + 21) +$$ $$+ (-1)^9 \cdot (5-24) \cdot (0-15) = -(12 \cdot 25)-3 \cdot 30-6 \cdot 47-26 \cdot 1-3 \cdot 27-$$ $$-(19 \cdot 15) = -300-90-282-26-81-285 = -1064.$$

Как мы могли заметить, для нахождения определителя $4-$го порядка нам понадобилось искать лишь определители $2-$го порядка, что намного легче. Разберем этот пример подробнее.

Для начала, вторым множителем каждого слагаемого является минор, расположенный в выбранных в начале решения строках. Мы берем все существующие в данных строках миноры. Далее, первым множителем каждого слагаемого является $(-1)$ в степени, которая является суммой номеров строк и столбцов, в которых расположен соответствующий минор. Третьим же множителем является дополнительный минор к соответствующему. Произведение дополнительного минора и $(-1)$ в соответствующей степени образует алгебраическое дополнение к своему минору.

Таким образом мы расписываем все миноры, находящиеся в выбранных строках, умножаем на их алгебраические дополнения и суммируем полученные произведения. После этого решаем полученное выражение, приходя к ответу, который является значением определителя исходной матрицы.

Пример 5 Найти определитель матрицы $4-$го порядка $$\begin{pmatrix} 1 & 4 & -3 & 0 \\ 5 & -2 & 1 & 7 \\ 0 & 2 & -6 & 4 \\ -5 & 1 & 0 & 2 \end{pmatrix}.$$

Решение

Разложим определитель данной матрицы по теореме Лапласа по $2-$му и $3-$му столбцам: $$\begin{vmatrix} 1 & 4 & -3 & 0 \\ 5 & -2 & 1 & 7 \\ 0 & 2 & -6 & 4 \\ -5 & 1 & 0 & 2 \end{vmatrix} = (-1)^{(1 + 2) + (2 + 3)} \cdot \begin{vmatrix} 4 & -3 \\ -2 & 1 \end{vmatrix} \cdot \begin{vmatrix} 0 & 4 \\ -5 & 2 \end{vmatrix} +$$ $$+ (-1)^{(1 + 3) + (2 + 3)} \cdot \begin{vmatrix} 4 & -3 \\ 2 & -6 \end{vmatrix} \cdot \begin{vmatrix} 5 & 7 \\ -5 & 2 \end{vmatrix} + (-1)^{(1 + 4) + (2 + 3)} \cdot \begin{vmatrix} 4 & -3 \\ 1 & 0 \end{vmatrix} \cdot \begin{vmatrix} 5 & 7 \\ 0 & 4 \end{vmatrix} +$$ $$+ (-1)^{(2 + 3) + (2 + 3)} \cdot \begin{vmatrix} -2 & 1 \\ 2 & -6 \end{vmatrix} \cdot \begin{vmatrix} 1 & 0 \\ -5 & 2 \end{vmatrix} + (-1)^{(2 + 4) + (2 + 3)} \cdot \begin{vmatrix} -2 & 1 \\ 1 & 0 \end{vmatrix} \cdot \begin{vmatrix} 1 & 0 \\ 0 & 4 \end{vmatrix} +$$ $$+ (-1)^{(3 + 4) + (2 + 3)} \cdot \begin{vmatrix} 2 & -6 \\ 1 & 0 \end{vmatrix} \cdot \begin{vmatrix} 1 & 0 \\ 5 & 7 \end{vmatrix} = (-1)^8 \cdot (4-6) \cdot (0 + 20) +$$ $$+ (-1)^9 \cdot (-24 + 6) \cdot (10 + 35) + (-1)^{10} \cdot (0 + 3) \cdot (20-0) +$$ $$+ (-1)^{10} \cdot (12-2) \cdot (2-0) + (-1)^{11} \cdot (0-1) \cdot (4-0) +$$ $$+ (-1)^{12} \cdot (0 + 6) \cdot (7-0) = -2 \cdot 20 + 18 \cdot 45 + 3 \cdot 20 + 10 \cdot 2 + 1 \cdot 4 +$$ $$+ 6 \cdot 7 = -40 + 810 + 60 + 20 + 4 + 42 = 896. $$

[свернуть]

Пример 6 Найти определитель матрицы $4-$го порядка $$\begin{pmatrix} 7 & 9 & 12 & 0 \\ 4 & 5 & -3 & 1 \\ 0 & 2 & 4 & -5 \\ 11 & -7 & 9 & 8 \end{pmatrix}.$$

Решение

Разложим определитель данной матрицы по теореме Лапласа по $2-$й и $4-$й строкам: $$\begin{vmatrix} 7 & 9 & 12 & 0 \\ 4 & 5 & -3 & 1 \\ 0 & 2 & 4 & -5 \\ 11 & -7 & 9 & 8 \end{vmatrix} = (-1)^{(2 + 4) + (1 + 2)} \cdot \begin{vmatrix} 4 & 5 \\ 11 & -7 \end{vmatrix} \cdot \begin{vmatrix} 12 & 0 \\ 4 & -5 \end{vmatrix} +$$ $$+ (-1)^{(2 + 4) + (1 + 3)} \cdot \begin{vmatrix} 4 & -3 \\ 11 & 9 \end{vmatrix} \cdot \begin{vmatrix} 9 & 0 \\ 2 & -5 \end{vmatrix} + (-1)^{(2 + 4) + (1 + 4)} \cdot \begin{vmatrix} 4 & 1 \\ 11 & 8 \end{vmatrix} \cdot \begin{vmatrix} 9 & 12 \\ 2 & 4 \end{vmatrix} +$$ $$+ (-1)^{(2 + 4) + (2 + 3)} \cdot \begin{vmatrix} 5 & -3 \\ -7 & 9 \end{vmatrix} \cdot \begin{vmatrix} 7 & 0 \\ 0 & -5 \end{vmatrix} +$$ $$+ (-1)^{(2 + 4) + ( 2 + 4)} \cdot \begin{vmatrix} 5 & 1 \\ -7 & 8 \end{vmatrix} \cdot \begin{vmatrix} 7 & 12 \\ 0 & 4 \end{vmatrix} + (-1)^{(2 + 4) + (3 + 4)} \cdot \begin{vmatrix} -3 & 1 \\ 9 & 8 \end{vmatrix} \cdot \begin{vmatrix} 7 & 9 \\ 0 & 2 \end{vmatrix} =$$ $$= (-1)^9 \cdot (-28-55) \cdot (-60-0) + (-1)^{10} \cdot (36 + 33) \cdot (-45-0) +$$ $$+ (-1)^{11} \cdot (32-11) \cdot (36-24) + (-1)^{11} \cdot (45-21) \cdot (-35-0) +$$ $$+ (-1)^{12} \cdot (40 + 7) \cdot (28-0) + (-1)^{13} \cdot (-24-9) \cdot (14-0) = -83 \cdot 60-69 \cdot $$ $$ \cdot 45-21 \cdot 12 + 24 \cdot 35 + 47 \cdot 28 + 33 \cdot 14 = -4980-3105-252 + 840 +$$ $$+ 1316 + 462 = -5719. $$

[свернуть]

Пример 7 Найти определитель матрицы $4-$го порядка $$\begin{pmatrix} -5 & 7 & 12 & 0 \\ 11 & -2 & 6 & 10 \\ 2 & 15 & 1 & -3 \\ 4 & -1 & 14 & 5 \end{pmatrix}.$$

Решение

Разложим определитель данной матрицы по теореме Лапласа по $1-$му и $2-$му столбцам: $$\begin{vmatrix} -5 & 7 & 12 & 0 \\ 11 & -2 & 6 & 10 \\ 2 & 15 & 1 & -3 \\ 4 & -1 & 14 & 5 \end{vmatrix} = (-1)^{(1 + 2) + (1 + 2)} \cdot \begin{vmatrix} -5 & 7 \\ 11 & -2 \end{vmatrix} \cdot \begin{vmatrix} 1 & -3 \\ 14 & 5 \end{vmatrix} +$$ $$+ (-1)^{(1 + 3) + (1 + 2)} \cdot \begin{vmatrix} -5 & 7 \\ 2 & 15 \end{vmatrix} \cdot \begin{vmatrix} 6 & 10 \\ 14 & 5 \end{vmatrix} +$$ $$+ (-1)^{(1 + 4) + (1 + 2)} \cdot \begin{vmatrix} -5 & 7 \\ 4 & -1 \end{vmatrix} \cdot \begin{vmatrix} 6 & 10 \\ 1 & -3 \end{vmatrix} +$$ $$+ (-1)^{(2 + 3) + (1 + 2)} \cdot \begin{vmatrix} 11 & -2 \\ 2 & 15 \end{vmatrix} \cdot \begin{vmatrix} 12 & 0 \\ 14 & 5 \end{vmatrix} +$$ $$+ (-1)^{(2 + 4) + (1 + 2)} \cdot \begin{vmatrix} 11 & -2 \\ 4 & -1 \end{vmatrix} \cdot \begin{vmatrix} 12 & 0 \\ 1 & -3 \end{vmatrix} +$$ $$+ (-1)^{(3 + 4) + (1 + 2)} \cdot \begin{vmatrix} 2 & 15 \\ 4 & -1 \end{vmatrix} \cdot \begin{vmatrix} 12 & 0 \\ 6 & 10 \end{vmatrix} = (-1)^6 \cdot (10-77) \cdot (5 + 42) +$$ $$+ (-1)^7 \cdot (-75-14) \cdot (30-144) + (-1)^8 \cdot (5-28) \cdot (-18-10) +$$ $$+ (-1)^8 \cdot (165 + 4) \cdot (60-0) + (-1)^9 \cdot (-11 + 8) \cdot (-36-0) +$$ $$+ (-1)^{10} \cdot (-2-60) \cdot (120-0) = -67 \cdot 47-89 \cdot 110 + 23 \cdot 28 + 169 \cdot 60-$$ $$-3 \cdot 36-62 \cdot 120 = -3149-9790 + 644 + 10140-108-7440 = -9703. $$

[свернуть]

Смотрите также

  1. А. И. Кострикин Введение в алгебру М.: Наука, 1994, Глава 3, §3, «Упражнения» (стр. 150)
  2. Курош А.Г. Курс высшей алгебры М.: Наука, 1968, Глава 1, §6, «Вычисление определителей» (стр. 51)
  3. Личный конспект, составленный на основе лекций Г. С. Белозерова.

Теорема Лапласа

Тест на проверку знаний о теореме Лапласа и определений, необходимых для формулировки данной теоремы.