Классификация точек разрыва

 Определение:

Точки в которых функция не является непрерывной называется точкой разрыва.

$latex=\lim_{x\rightarrow x_{0}}f(x)=f(x_{0})$

Классификация точек разрыва.

Определение:

Если существует конечный предел справа $latex=(f(a+0))$

$latex=\lim_{x\rightarrow a+0}f(x)(=f(a+0))$ и$latex=\lim_{x\rightarrow a-0}f(x)(=f(a-0))$,

причём $latex=f(a-0)=f(a+0)\neq f(a),$ то точка $latex=a$  называется точкой устранимого разрыва.(название устранимый, оправдывает себя), его можно устранить изменив значение функций в точке $latex=a$ .

Пример

1) $latex=f(x)=sgn^{2}x=\begin{cases}1, & \text{ } x\neq 0 \\ 0, & \text{ } x= 0 \end{cases}$

$latex=sgn {x}=\begin{cases}1, & \text{ } x> 0\\ 0, & \text{ } x=0 \\ -1, & \text{ } x< 0 \end{cases}$

defaul6778t

$latex=\lim_{x\rightarrow +0}sgn^{2}x=1\neq 0$

точка 0-точка устранимого разрыва.

 

 

 

 

 

2) $latex=f(x)=\begin{cases}x\sin \frac{1}{x}, & \text{ } x\neq 0\\ 1, & \text{ } x=0 \end{cases}$ 

$latex=\lim_{x\rightarrow 0} f(x)=\lim_{x\rightarrow 0}\underbrace{x}_{0}\sin \frac{1}{x}=0\neq 1$

$latex=x=0$ точка устранимого разрыва.

Определение:

Если существуют конечные односторонние пределы

$latex=\exists f(a-0)< \infty$

$latex=\exists f(a+0)< \infty$  и   $latex=f(a+0)\neq f(a-0)$, то точка $latex=a$  называется точкой разрыва первого рода.

Примеры

1) $latex=f(x)=sgnx=\begin{cases}1, & \text{ } x> 0\\ 0, & \text{ } x=0 \\ -1, & \text{ } x< 0 \end{cases}$

default1

 

 

 

 

 

$latex=f(+0)=1< \infty$

$latex=f(-0)=-1< \infty$

2)$latex=f(x)=\begin{cases}x^{2}, & \text{ } x> 0 \\ 5, & \text{ } x=0 \\2x-2, & \text{ } x< 0 \end{cases}$

Определение:

Точка $latex=a$  называется точкой разрыва второго рода, если она не является точкой разрыва первого рода и точкой устранимого разрыва, то есть если хотя бы один из сторонних пределов либо не существует, либо бесконечен.

Пример

$latex=f(x)=\begin{cases}\frac{1}{x^{2}}, & \text{ } x\neq 0\\ 1, & \text{ } x=0 \end{cases}$

$latex=f(x)=\begin{cases}\frac{1}{x}, & \text{ } x> 0 \\ 1, & \text{ } x=0 \\ 2x, & \text{ } x< 0 \end{cases}$

$latex=\lim_{x\rightarrow 0}f(x)=\lim_{x\rightarrow 0}2x=0$
$latex=\lim_{x\rightarrow +0}f(x)=\lim_{x\rightarrow +0}\frac{1}{x}=\infty$

точка разрыва второго рода.

Рекомендации

 Учебники :

  • Кудрявцев Л.Д. «Математический анализ» Том 1, Глава 1, § 5, Тема 5.1 «Точки непрерывности и точки разрыва функции» стр.84-87;
  •  Фильтенгольц Г.М. «Курс дифференциального и интегрального исчисления» Том 1, Глава 2, § 4 «Непрерывность и разрывы функций»  стр.146-167 ;
  • Ильин В.А.,Позняк Э.Г. «Основы математического анализа» Часть1, Глава 4, § 8  «Классификация точек разрыва функции» стр.143-145.

Сборники задач:

  • Демидович Б.П. «Сборник упражнений по амтематическому анализу» 13-еиздание, исправленное, Отдел 1, § 7 «Непрерывность функции» стр.77-87;
  • Дороговцев А.Я. «Математический анализ» Глава 3, § 2 «Непрерывные функции»  стр.50-58.

"Разрывность функции"

Тест расчитан на людей которые внимательно изучили разделы: «Точки разрыва монотонной функции» и «Классификация точек разрыва», и следовали всем рекомендациям

Таблица лучших: "Разрывность функции"

максимум из 32 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

(Основной материал был взят из курса Математического анализа ,1 курс,1 семестр (доц. Лысенко З.М.))