Формула Муавра

Теорема. Допустим $z=r\cdot\left(\cos\phi+i\sin\phi\right)$ и $n$ принадлежит множеству целых чисел. Тогда можно считать, что $z^{n}=r^{n}\cdot\left(\cos\left(n\phi\right)+i\sin\left(n\phi\right)\right).$

Пусть $n=2,$ где $n\in \mathbb {Z}$ — база индукции. Тогда $$z^{2}=r\cdot\left(\cos\phi+i\sin\phi\right)\cdot r\cdot\left(\cos\phi+i\sin\phi\right)=r^{2}(\cos\left(2\phi\right)+i\sin\left(2\phi\right)).$$Допустим, что теорема верна $\forall n\leqslant m, m\leqslant2$ и докажем, что она так же верна и для $n=m+1.$ Тогда $$z^{m+1}=z^{m}\cdot z=r^{m}(\cos\left(m\phi\right)+i\sin\left(m\phi\right))\cdot r\cdot(\cos\phi+i\sin\phi)=$$ $$=r^{m+1}(\cos\left(m+1\right)\phi+i\sin\left(m+1\right)\phi).$$ Для $n=1$ формула простая, а если $n=0,$ то $z=1,$ то есть $$z^{0}=r^{0}\left(\cos\left(0\phi\right)+i\sin\left(0\phi\right)\right)=1\left(\cos0+i\sin0\right)=1.$$ Следовательно, теорема справедлива $\forall n\geqslant0.$ Докажем, что она так же справедлива $\forall n\lt0.$ Тогда $$z^{-n}=\dfrac{1}{z^{n}}=\dfrac{1}{\left(r\cdot\left(\cos\phi+i\sin\phi\right)\right)^{n}}=$$ $$=\dfrac{1}{r^{n}\left(\cos\left(n\phi\right)+i\sin\left(n\phi\right)\right)}=r^{-n}\dfrac{cos\left(n\phi\right)-i\sin\left(n\phi\right)}{\cos\left(n\phi\right)^{2}+\sin\left(n\phi\right)^{2}}=$$ $$=r^{-1}\dfrac{\cos\left(-n\phi\right)+i\sin\left(-n\phi\right)}{1}=r^{-n}\left(\cos\left(-n\phi\right)+i\sin\left(-n\phi\right)\right).$$ Теорема доказана.

Следствие.$\left|z^{n} \right|=\left|z \right|^{n}
\forall n\in \mathbb {Z},$$ $$Arg\left(z^{n}\right)=n\cdot Arg\left(z\right)+2\pi k, k\in \mathbb {Z}, \forall n\in \mathbb {Z}.$

Примеры

Рассмотрим несколько примеров с использованием формулы Муавра.

  1. Вычислить $\sqrt[5]{\dfrac{\left(-1+i\right)^{3}\cdot\left(\sqrt{3}+i\right)^{4}}{i^{1323}}}.$
    Решение

    Найдём сначала $r$ для $\left(-1+i\right)^{3}$: $$r=\sqrt{\left(-1\right)^{2}+1^{2}}=\sqrt{2}.$$ Теперь найдём аргумент $z$ для $\left(-1+i\right)^{3}.$ Для этого нужно найти угол $\alpha :$ $$\tan\alpha=1, \alpha=\dfrac{\pi}{4}+k\pi, k\in Z.$$ Так как $\sin\alpha \lt0$ и $\cos\alpha \lt0,$ то $\alpha=\dfrac{3\pi}{4}.$
    Теперь найдём $r$ и $z$ для $\left(\sqrt{3}+i\right)^{4}:$ $$r=\sqrt{\sqrt{3}^{2}+1^{2}}=\sqrt{4}=2.$$ Найдём $z:$
    $$\tan\beta=\dfrac{1}{\sqrt{3}}, \beta=\dfrac{\pi}{6}+s\pi, s\in Z.$$ Так как $\sin\beta\gt0$ и $\cos\beta\gt0,$ то $\beta=\dfrac{\pi}{6}.$ $$\left(-1+i\right)^{3}\cdot\left(\sqrt{3}+i\right)^{4}=\left(\cos\left(\dfrac{9\pi}{4}+\dfrac{4\pi}{6}\right)\right)+i\sin\left(\dfrac{9\pi}{4}+\dfrac{4\pi}{6}\right)=$$ $$=\cos\dfrac{\pi}{12}+i\sin\dfrac{\pi}{12},$$ $$i^{1323}=-i.$$ По формуле $\dfrac{\phi+2\pi k}{n},$ где $n=5,$ $k=\overline{0, 4}$ получаем:$$w_{0}=\sqrt[5]{\sqrt{2}^{3}\cdot16}\left(\cos\left(\dfrac{\dfrac{\pi}{12}}{5}\right)+i\sin\left(\dfrac{\dfrac{\pi}{12}}{5}\right)\right)=\sqrt[5]{\sqrt{2}^{3}\cdot16}\left(\cos\left(\dfrac{\pi}{60}\right)+\right.$$ $$\left.+i\sin\left(\dfrac{\pi}{60}\right)\right),$$ $$w_{1}=\sqrt[5]{\sqrt{2}^{3}\cdot16}\left(\cos\left(\dfrac{\dfrac{\pi}{12}+2\pi}{5}\right)+i\sin\left(\dfrac{\dfrac{\pi}{12}+2\pi}{5}\right)\right)=$$ $$=\sqrt[5]{\sqrt{2}^{3}\cdot16}\left(\cos\left(\dfrac{25\pi}{60}\right)+i\sin\left(\dfrac{25\pi}{60}\right)\right),$$ $$w_{2}=\sqrt[5]{\sqrt{2}^{3}\cdot16}\left(\cos\left(\dfrac{\dfrac{\pi}{12}+4\pi}{5}\right)+i\sin\left(\dfrac{\dfrac{\pi}{12}+4\pi}{5}\right)\right)=$$ $$=\sqrt[5]{\sqrt{2}^{3}\cdot16}\left(\cos\left(\dfrac{49\pi}{60}\right)+i\sin\left(\dfrac{49\pi}{60}\right)\right),$$ $$w_{3}=\sqrt[5]{\sqrt{2}^{3}\cdot16}\left(\cos\left(\dfrac{\dfrac{\pi}{12}+6\pi}{5}\right)+i\sin\left(\dfrac{\dfrac{\pi}{12}+6\pi}{5}\right)\right)=$$ $$=\sqrt[5]{\sqrt{2}^{3}\cdot16}\left(\cos\left(\dfrac{73\pi}{60}\right)+i\sin\left(\dfrac{73\pi}{60}\right)\right),$$ $$w_{4}=\sqrt[5]{\sqrt{2}^{3}\cdot16}\left(\cos\left(\dfrac{\dfrac{\pi}{12}+8\pi}{5}\right)+i\sin\left(\dfrac{\dfrac{\pi}{12}+8\pi}{5}\right)\right)=$$ $$=\sqrt[5]{\sqrt{2}^{3}\cdot16}\left(\cos\left(\dfrac{97\pi}{60}\right)+i\sin\left(\dfrac{97\pi}{60}\right)\right).$$

  2. Вычислить $\left(\sqrt{3}+i\right)^{2020}.$
    Решение

    $$\tan\alpha=\dfrac{\sqrt{3}}{3}, \alpha=\dfrac{\pi}{6}+k\pi, k\in Z.$$ Так как $\sin\beta\gt0$ и $\cos\beta\gt0,$ то $\beta=\dfrac{\pi}{6}.$ $$\left(\sqrt{3}+i\right)^{2020}=\left(2\left(\cos{\dfrac{\pi}{6}}+i\sin{\dfrac{\pi}{6}}\right)\right)^{2020}=$$ $$=2^{2020}\left(\cos\left({\dfrac{2018+2}{6}}\pi\right)+i\sin\left({\dfrac{2018+2}{6}}\pi\right)\right)=$$ $$=2^{2020}\left(cos\dfrac{\pi}{3}+i\sin{\dfrac{\pi}{3}}\right)=2^{2020}\left(\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2}\right).$$

Смотрите также

  1. А.И. Кострикин Введение в алгебру. Основы алгебры. — Москва: Физматлит, 1994. -320с. (с. 201-202).
  2. Личный конспект, основанный на лекциях Г. С. Белозёрова.

Формула Муавра

Проверим как Вы усвоили материал.

Извлечение корней из комплексных чисел

Корень степени $n$ из комплексного числа

Определение Пусть $z=r\left ( \cos\varphi + i\sin\varphi \right ).$ Тогда корнем степени $n$ из комплексного числа $z$ называется комплексное число $w$, для которого верно равенство $w^n=z.$

Легко заметить, что при $z=0 \Rightarrow w=0.$ Поэтому предположим, что $z \neq 0$
Пусть $w=\rho \left ( \cos\psi + i\sin\psi \right ),$ чему тогда равны $\rho,\:\psi?$

Распишем равенство $w^n=z,\:z=r\left ( \cos\varphi + i\sin\varphi \right )$ $$\left ( \rho \left ( \cos\psi +i\sin\psi \right ) \right )^n=r(\cos\varphi +i\sin\varphi )$$ Воспользуемся формулой Муавра:$$ \rho^n \left ( \cos n \psi +i\sin n \psi \right ) =r(\cos\varphi +i\sin\varphi )$$Из равенства комплексных чисел следует равенство их аргументов и модулей. $$\rho = \sqrt[n]{r}$$ $$\psi =\frac{\varphi }{n}+\frac{2\pi k}{n},\:k=0,1,..,n-1$$ Тогда: $$w_k=\sqrt[n]{r}\left( \cos\left ( \frac{\varphi }{n} +\frac{2\pi k}{n}\right )+i\sin\left ( \frac{\varphi }{n} +\frac{2\pi k}{n}\right )\right )$$ Пришли к зависимости корня от параметра $k$. Рассмотрим лемму.

Лемма. $w_k=w_l\Leftrightarrow \left ( k-l \right )\vdots \,n$

$w_k=w_l$ равные комплексные числа, а значит их аргументы равны $$\frac{\varphi }{n}+\frac{2\pi k}{n}=\frac{\varphi }{n}+\frac{2\pi l}{n}+2\pi t$$ $$ 2\pi \left(k-l \right )=2\pi nt\Leftrightarrow k-l=nt\Leftrightarrow \left(k-l \right )\vdots \: n$$

$W=\left \{ w_0,\:w_1,…,\:w_{n-1} \right \}$ — множество корней степени $n$ из $z$. В силу вышеизложенной леммы все корни попарно различны. Значит мы имеем только n различных значений аргумента, при этом модули корней равны $$\left | \sqrt[n]{z} \right |=\sqrt[n]{\left | z \right |}$$ $$\mathop{\rm Arg}\,\sqrt[n]{z}=\frac{\mathop{\rm Arg}\,z+2\pi k}{n},\,k=\overline{0,\,n-1}$$Общий вид корня степени $n$ $$\sqrt[n]{z}= \left \{ \sqrt[n]{r}\left ( \cos\left ( \frac{\varphi }{n} +\frac{2\pi k}{n} \right ) +i\sin\left ( \frac{\varphi }{n} +\frac{2\pi k}{n}\right ) \right) \right \},$$ где $k\in \mathbb{N},\,k=\overline{0,\,n-1}$

Замечание. $\displaystyle\frac{\varphi }{n}$ называется фазой, $\displaystyle\frac{2\pi k}{n}$ называется сдвигом по фазе.

Следствие. Так как все значения корня имеют одинаковый модуль, то есть одинаковое расстояние от начала координат (равное модулю этих корней), все они вписаны в окружность с центром в начале координат. Множество всех корней степени $n$ из комплексного числа изображается как правильный $n$-угольник.

Квадратный корень из комплексного числа

Извлечь квадратный корень из комплексного числа можно и без перехода к тригонометрической форме. Рассмотрим теорему

Теорема. Если $z = a + bi,\:\left(a^2+b^2\neq 0\right),$ то существует ровно 2 корня

  1. $b = 0,\:a > 0 \Rightarrow w = \pm \sqrt{a}$
  2. $b = 0,\: a < 0 \Rightarrow w = \pm i\sqrt{a}$
  3. $b \neq 0 \Rightarrow w = \pm \left(\sqrt{\displaystyle\frac{\sqrt{a^2+b^2} + a} {2}}+i \, \mathop{\rm sign} \, b \sqrt{\displaystyle\frac{\sqrt{a^2+b^2}-a}{2}}\right)$

Пусть $w=x+yi,$ где $x,\:y\in \mathbb{R}$ $$w^2=z \Rightarrow (x+yi)^2=a+bi$$ $$x^2-y^2+2xyi=a+bi$$ Получили $$x^2-y^2=a$$ $$2xy=b$$ Если $b=0$, тогда или $x=0$, или $y=0$.

  1. $b=0,\:y=0.$ Тогда получим $x^2=a \Rightarrow \: x\pm \sqrt{a}$
  2. $b=0,\:x=0.$ Тогда получим $-y^2=a \Rightarrow a<0.$ Тогда $y^2=-a \Rightarrow y^2=ai^2\Rightarrow y=\pm\sqrt{a}i$
  3. $b \neq 0,\: x \neq 0.$

    Выразим $y$ из равенства $$y=\frac{b}{2x}$$Подставим значение $y$ в равенство, получим: $$x^2-\frac{b^2}{4x^2}=a$$ Домножим обе части равенства на $4x^2$ $$4x^4-4x^2a-b^2=0$$

    Воспользуемся формулой дискриминанта, тогда $$x_{1,2}^{2}=\frac{2a\pm\sqrt{4a^2+4b^2}}{4}=\frac{a\pm\sqrt{a^2+b^2}}{2},\: x_{1,2}^{2}\in \mathbb{R}$$ $$x_{1}^{2}=\frac{a+\sqrt{a^2+b^2}}{2}>0$$ $$x_{2}^{2}=\frac{a-\sqrt{a^2+b^2}}{2}<0,$$так как $x_{2}^{2}\in \mathbb{R} \Rightarrow$ не имеет решений $$x=\pm \sqrt{\frac{a+\sqrt{a^2+b^2}}{2}}$$

    Выразим $y^2$ из равенства $$y^2=\frac{a+\sqrt{a^2+b^2}}{2}-a= \frac{\sqrt{a^2+b^2}-a}{2}$$ Тогда $$y=\pm \sqrt{\frac{\sqrt{a^2+b^2}-a}{2}}$$ Из равенства следует, что $\mathop{\rm sign}\,xy=\mathop{\rm sign}\,b.$ Значит, если $\mathop{\rm sign}\,b>0$ то $\mathop{\rm sign}\,x=\mathop{\rm sign}\,y,$ если же $\mathop{\rm sign}\,b<0$, то $\mathop{\rm sign}\,x=-\mathop{\rm sign}\,y.$ Откуда следует: $$w=\pm \left( \sqrt{\frac{\sqrt{a^2+b^2}+a}{2}}+i\,\mathop{\rm sign}\,b \sqrt{\frac{\sqrt{a^2+b^2}-a}{2}}\right)$$

Примеры решения задач

  1. Найти общий вид корней третьей степени из $z=-\sqrt{3}+i$
    Решение

    Запишем $z$ в тригонометрической форме $$z=2\left ( \cos\frac{5\pi}{6}+i\sin\frac{5\pi}{6} \right )$$Аргументы и модули корней третьей степени будут иметь вид:$$\mathop{\rm Arg}\,\sqrt[3]{z}=\frac{5 \pi }{18}+\frac{2 \pi k }{3},\:k=0,1,2$$ $$\left | \sqrt[3]{z} \right |=\sqrt[3]{2}$$Тогда общий вид корней будет таков $$w_k=\left \{ \sqrt[3]{2}\left ( \cos\left ( \frac{5\pi}{18}+\frac{2\pi k}{3} \right )+i\sin\left ( \frac{5\pi}{18}+\frac{2\pi k}{3} \right ) \right ) \right \},$$ $$k=0,1,2$$

    [свернуть]
  2. Найти значения квадратных корней из $z=3-4i$
    Решение

    $$w_{1,2}=\pm \sqrt[2]{z},\:w=x+iy$$ $$\left | z \right |=\sqrt{a^2+b^2}=\sqrt{3^2+4^2}=\sqrt{25}=5$$
    Ранее мы получили равенства для $x^2$ и $y^2$ . Воспользуемся этими равенствами $$y^2=\frac{1}{2}\left (-3+5 \right )=1$$ $$x^2=\frac{1}{2}\left ( 3+5 \right )=4 $$ Откуда $$x=\pm 2,\:y=\pm 1$$ Значит $$w_{1,2}=\pm \left(2-i\right)$$

    [свернуть]
  3. Решите уравнение $z^2=2i$
    Решение

    $$z=\pm \sqrt{2i}$$Уравнение будет иметь два корня $w_{1,2}$. Найдем их
    $$w_{1,2}=\pm z,\:w=x+iy$$ $$\left | z^2 \right |=\sqrt{a^2+b^2}=\sqrt{0^2+2^2}=\sqrt{4}=2$$
    Ранее мы получили равенства для $x^2$ и $y^2$ . Воспользуемся этими равенствами $$y^2=\frac{1}{2}\left (0+2 \right )=1$$ $$x^2=\frac{1}{2}\left ( 0+2 \right )=1 $$ Откуда $$x=\pm 1,\:y=\pm 1$$ Значит корни уравнения будут равны $$w_{1,2}=\pm \left(1+i\right)$$

    [свернуть]
  4. Будет ли $z_1=\sqrt[4]{2}\left ( \cos \frac{14\pi}{24}+i\sin\frac{14\pi}{24} \right )$ корнем четвертой степени из $z=\sqrt{3}+i$?
    Решение

    Найдем общий вид корней четвертой степени из $z$ и проверим, принадлежит ли $z_1$ множеству корней. Запишем $z$ в тригонометрической форме$$z=2\left ( \cos \frac{\pi}{6}+i\sin\frac{\pi}{6} \right )$$Аргументы и модули корней четвертой степени будут иметь вид: $$\mathop{\rm Arg}\,\sqrt[4]{z}=\frac{ \pi }{24}+\frac{ \pi k }{2},\:k=0,1,2,3$$ $$\left | \sqrt[4]{z} \right |=\sqrt[4]{2}$$ Тогда общий вид корней будет таков $$w_k= \left \{ \sqrt[4]{2}\left ( \cos\left ( \frac{\pi}{24}+\frac{\pi k}{2} \right )+i\sin\left ( \frac{\pi}{24}+\frac{\pi k}{2} \right ) \right ) \right \},$$ $$k=0,1,2,3$$ Корни четвертой степени комплексного числа $z$ равны $$w_0=\left \{ \sqrt[4]{2}\left ( \cos\left ( \frac{\pi}{24} \right )+i\sin\left ( \frac{\pi}{24} \right ) \right ) \right \}$$ $$w_1=\left \{ \sqrt[4]{2}\left ( \cos\left ( \frac{13\pi}{24} \right )+i\sin\left ( \frac{13\pi}{24} \right ) \right ) \right \}$$ $$w_2=\left \{ \sqrt[4]{2}\left ( \cos\left ( \frac{25\pi}{24} \right )+i\sin\left ( \frac{25\pi}{24} \right ) \right ) \right \}$$ $$w_3=\left \{ \sqrt[4]{2}\left ( \cos\left ( \frac{37\pi}{24} \right )+i\sin\left ( \frac{37\pi}{24} \right ) \right ) \right \}$$ $z_1$ не равен какому-либо корню четвертой степени из $z,$ значит он не является корнем четвертой степени из $z$

    [свернуть]

Извлечение корней из комплексных чисел

Тест на знание темы «Извлечение корней из комплексных чисел»

Смотрите также

  1. Курош А.Г. Курс высшей алгебры М.: Наука, 1968, Глава 4, § 19, «Дальнейшее изучение комплексных чисел» (стр. 123-127)
  2. К. Д. Фадеев Лекции по алгебре М.: Наука, 1984, Глава 2, §3, «Обоснование комплексных чисел»(стр. 39-42)
  3. А. И. Кострикин Введение в алгебру М.: Наука, 1994, Глава 5, §1, «Обоснование комплексных чисел»(стр. 202-203)

Геометрическая интерпретация комплексных чисел

Любое комплексное число [latex] z=(a,b)[/latex] можно изобразить как точку на комплексной плоскости с координатами [latex]a[/latex] и [latex]b[/latex], где ось абсцисс называется вещественной, а ось ординат — мнимой.
Точка на плоскости

Определение 1:

Модулем комплексного числа называется корень суммы квадратов его действительной и мнимой частей. [latex]z=a+ib[/latex], [latex]|z|=\sqrt{a^2+b^2}=[/latex] [latex]\sqrt{(Re\;z)^{2}+(Im\;z)^{2}}[/latex],
[latex]|z|\ge 0,\; |z|= [/latex] [latex]0 \Leftrightarrow z=0.[/latex]

Определение 2:

Величина угла, который образует вектор изображающий данное число на комплексной плоскости с вещественной осью называется аргументом этого комплексного числа [latex](\arg z), z\ne 0.[/latex]
Угол, отсчитываемый от оси против часовой стрелки — отрицательный, по — положительный.
Углы, отличающиеся на [latex]2\pi k,k \in Z[/latex], соответствуют одному и тому же числу и записываются как:
[latex]\mathrm{Arg}\;z=[/latex] [latex]\arg z +2\pi k,k \in Z[/latex] , [latex]0\le \arg z < 2\pi[/latex].

Определение 3:

У комплексного числа существует тригонометрическая форма записи [latex]z=r(\cos \varphi + i\sin\varphi),[/latex] [latex] r=|z|.[/latex]

Примеры:

Найти геометрическое место точек (ГМТ):
  1. [latex]|z|\le 1[/latex]
  2. ex1

  3. [latex]|z+1|>1[/latex]

[latex]|z+1|=|x+iy+1|=[/latex] [latex]|(x+1)+iy|=[/latex] [latex]\sqrt{(x+1)^{2}+y{2}}=[/latex] [latex]\sqrt{(x+1)^{2}+(y+0)^{2}}>1[/latex]
ex2

Формула Муавра:

[latex]z^n=[/latex] [latex]r^n(\cos(n\varphi)+i\sin(n\varphi)).[/latex]

Лемма 1:

Для любых двух комлексных чисел [latex]z_1,z_2\;\in C[/latex] справедливо неравенство [latex]\left||z_1|-|z_2|\right|\le |z_1\pm z_2|[/latex] [latex]\le |z_1|+|z_2|[/latex]

Доказательство:

Пусть [latex]z_1\ne 0, z_2\ne 0[/latex],[latex]z_1=r_1(\cos\varphi_1+i\sin\varphi_1),[/latex] [latex]z_2=r_2(\cos\varphi_2+i\sin\varphi_2).[/latex]
[latex]|z_1+z_2|=[/latex] [latex]|r_1(\cos\varphi_1+i\sin\varphi_1)+r_2(\cos\varphi_2+i\sin\varphi_2)|=[/latex] [latex]|(r_1\cos\varphi_1+r_2\cos\varphi_2)+i(r_1\sin\varphi_1+r_2\sin\varphi_2)|=[/latex] [latex]\sqrt{r_1\cos\varphi_1+r_2\cos\varphi_2)^{2}+i(r_1\sin\varphi_1+r_2\sin\varphi_2)^{2}}=[/latex] [latex]\sqrt{r_{1}^{2}(\cos^{2}\varphi_1+\sin^{2}\varphi_1)+r_2^{2}(\cos^{2}\varphi_2+\sin^{2}\varphi_2)+2r_{1}r_{2}(\cos\varphi_1\cos\varphi_2+\sin\varphi_1\sin\varphi_2)}=[/latex](*)
[latex]\cos^{2}\varphi_1+\sin^{2}\varphi_1 = 1[/latex]
[latex]cos^{2}\varphi_2+\sin^{2}\varphi_2 = 1[/latex]
(*)=[latex]\sqrt{r_{1}^{2}+r_{2}^{2}+2r_1r_2\cos(\varphi_1-\varphi_2)}\le[/latex] [latex] \sqrt{r_{1}^{2}+r_{2}^{2}+2r_1r_2}=[/latex] [latex]\sqrt{(r_1+r_2)^2}=[/latex] [latex]r_1+r_2=|z_1|+|z_2|.[/latex]

Литература:

Геометрическая интерпретация комплексных чисел

Тест на тему «Геометрическая интерпретация комплексных чисел»: