Циклическая группа

Будем говорить, что группа [latex]G[/latex] является циклической, если существует такой элемент [latex]a\in G[/latex], что всякий элемент [latex]x\in G[/latex] может быть записан в виде [latex]x=a^n[/latex], где [latex]n\in Z[/latex](другими словами, если отображение [latex]f: Z\rightarrow G[/latex], определяемое формулой [latex]f(n)=a^n,[/latex]сюръективно). При этом элемент [latex]a[/latex] называется образующей группы [latex]G[/latex]. Всякая циклическая группа, очевидно, абелева.
Примером бесконечной циклической группы служит аддитивная группа целых чисел — всякое целое число кратно числу [latex]1[/latex], то есть это число служит образующим элементом рассматриваемой группы; в качестве образующего элемента можно было бы также взять число [latex]-1[/latex].
Примером конечной циклической группы порядка [latex]n[/latex] служит мультипликативная группа корней [latex]n[/latex]-ой степени из единицы. Все эти корни являются степенями одного их них, а именно первообразного корня.

Задача

Пусть [latex]G[/latex] — группа с групповой операцией [latex]\ast[/latex] и [latex]g\in G[/latex]. Доказать, что множество [latex]H=\{g^k, (g’)^k|k\in N\cup \{0\}\}[/latex] является группой. Группа [latex]H[/latex] является циклической, порождённой [latex]g[/latex]. [latex]H=\langle g\rangle[/latex].

Спойлер
[свернуть]

Решение.Введём обозначения:[latex] g’=g^{-1}, (g’)^k=g^{-k}[/latex]. Докажем, что для [latex]m,n\in Z[/latex] выполняется [latex]g^m\ast g^n=g^{m+n}[/latex].
[latex] m\geq 0, n\geq 0\Rightarrow g^m\ast g^n=g^{m+n}[/latex].
[latex]-n\leq m<0

Структуры и подструктуры

Тест на тему «Простейшие задачи на определение структур группы, кольца, поля. Подструктуры.Циклическая группа. Симметрическая группа.». Прочтите все четыре статьи, прежде чем проходить тест.

Таблица лучших: Структуры и подструктуры

максимум из 7 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Теорема о представлении элементов конечной циклической группы

Определение циклической группы

Пусть дана группа [latex](G, \cdot)[/latex]. Если [latex]\exists g_{0}\in G [/latex] такое, что [latex]\forall g\in G[/latex], [latex]\exists n\in \mathbb Z[/latex]: [latex]g=g_{0}^n[/latex], то [latex](G, \cdot)[/latex] называется циклической группой  и пишут [latex]G=<g_{0}>_{n}[/latex], где [latex]g_{0}[/latex] образующая и количество элементов, порядок группы, [latex]|G|=n[/latex]. Циклическая группа [latex]G[/latex] называется конечной, если она имеет конечное число элементов, в противном случае группа называется бесконечной.

Теорема
Пусть дана циклическая группа [latex](G, \cdot)[/latex] и [latex]G=<g_{0}>_{n}[/latex], тогда эта группа имеет следующий вид: [latex]G=\{ g_{0}^0=1, g_{0}, g_{0}^2, g_{0}^3, \dots, g_{0}^{n-1}\}[/latex].

Доказательство
Для доказательства покажем что все элементы нашей группы различные, иначе количество элементов в группе будет меньше её порядка.
Пусть [latex]\exists i<j[/latex] такие, что [latex] 0\leq i<j \leq{n-1}[/latex] и [latex] g_{0}^{i} = g_{0}^{j}\Rightarrow[/latex] [latex]g_{0}^{j-i} = 1[/latex], тогда [latex]\exists m\in \mathbb Z : m=j-i[/latex], следовательно [latex]1\leq m\leq{n-1}[/latex] и [latex]g_{0}^m=1.[/latex] Отсюда [latex]\forall g\in G, g=g_{0}^t, t\in \mathbb Z[/latex] и [latex]t=mq+r, 0\leq r<m,[/latex] тогда [latex]g_{0}^t=g_{0}^{mq+r}=[/latex][latex](g_{0}^m)^q\cdot g_{0}^r\Rightarrow[/latex] [latex]g_{0}^t =1\cdot g_{0}^r=g_{0}^r[/latex], это значит что все элементы группы будут равны [latex]g_{0}^r[/latex], где [latex]\forall t\in \mathbb Z[/latex] существует свой [latex]r[/latex],но [latex]0\leq r<m[/latex], а [latex]1\leq m\leq{n-1}[/latex] мы получаем противоречие, поскольку мы не получим всю группу.

Таким образом [latex]G=\{ g_{0}^0=1, g_{0}, g_{0}^2, g_{0}^3, \dots, g_{0}^{n-1}\}[/latex].

Примеры циклических групп
[latex]A=\{1, 2, 2^2, 2^3, 2^4, 2^5, 2^6\}[/latex] — Конечная иклическая группа, поскольку каждый элемент является значением [latex]2^k, 0\leq k\leq 6[/latex], отсюда образующей этой группы является [latex]2[/latex] и [latex]A=<2>_{7}[/latex].

[latex]A=\{1,\frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, \frac{1}{2^4}, \frac{1}{2^5}, \frac{1}{2^6} \}[/latex] — Конечная циклическая группа, каждый элемент является значением [latex](\frac{1}{2})^k, 0\leq k\leq 6[/latex], образующей является [latex]\frac12[/latex] и [latex]A=<\frac12>_{7}[/latex].

Литература

  1. Воеводин В.В. Линейная алгебра. М.: Наука, 1980 с. 24-28.
  2. Фаддеев Д.К. Лекции по алгебре. М.: Наука, 1984 с. 246-248.
  3. Белозёров Г.С. Конспект лекций по линейной алгебре.

 

Теорема о представлении элементов конечной циклической группы

Тест на тему «Теорема о представлении элементов конечной циклической группы»:

Таблица лучших: Теорема о представлении элементов конечной циклической группы

максимум из 8 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных