Бесконечно малые функции

Если [latex]\lim_{x\rightarrow a }f(x)=0[/latex], то функция [latex]f(x)[/latex] называется бесконечно малой при [latex]x\rightarrow a[/latex].

Свойства

  1. Сумма (разность) конечного числа бесконечно малых функций при [latex]x\rightarrow a[/latex] есть бесконечно малая функция при [latex]x\rightarrow a[/latex]
  2. Доказательство
    Пусть [latex]f_{1}(x),f_{2}(x),..,f_{n}(x)[/latex] бесконечно малые функции при [latex]x\rightarrow a[/latex]. Тогда существуют числа [latex]\delta _{1},\delta _{2},..,\delta _{n}[/latex] и число [latex]\varepsilon >0[/latex] такие что
    [latex]|x-a|<\delta _{1},|x-a|<\delta _{2},..,|x-a|<\delta _{n}[/latex] (1)
    что влечет за собой условия
    [latex]|f_{1}(x)|<\frac{\varepsilon }{n},|f_{2}(x)|<\frac{\varepsilon }{n},..,|f_{n}(x)|<\frac{\varepsilon }{n}[/latex] (2).
    Если [latex]\delta =\min\begin{Bmatrix}\delta _{1};\delta _{2};..;\delta _{n}\end{Bmatrix}[/latex], то условие [latex]|x-a|<\delta [/latex] усиливает группу условий (1) что влечет за собой группу условий (2). Следовательно
    [latex]\\|f_{1}(x)+f_{2}(x)+..+f_{n}(x)|\leqslant |f_{1}(x)|+|f_{2}(x)|+..+|f_{n}(x)|\\|f_{1}(x)|+|f_{2}(x)|+..+|f_{n}(x)|<\sum_{1}^{n}\frac{\varepsilon }{n}=\varepsilon\\|f_{1}(x)+f_{2}(x)+..+f_{n}(x)|<\varepsilon [/latex]

  3. Произведение бесконечно малой функции [latex]f(x)[/latex] на ограниченную [latex]g(x)[/latex] в некоторой проколотой окрестности точки [latex]a[/latex] есть бесконечно малая функция при [latex]x\rightarrow a[/latex]
  4. Доказательство
    Так как функция [latex]g(x)[/latex] ограничена, то для [latex]x[/latex] удовлетворяющих условию
    [latex]|x-a|<\delta _{1}[/latex] (1)
    существует число
    [latex]C:|g(x)|<C[/latex] (2)
    Так как функция [latex]f(x)[/latex] бесконечно малая, то существует некоторая окрестность [latex]\delta _{2}[/latex] и число
    [latex]\varepsilon >0[/latex] для которых выполняются условия
    [latex]|x-a|<\delta _{2}[/latex] (3)
    и
    [latex]|f(x)|<\frac{\varepsilon}{C}[/latex] (4)
    Выберем [latex]\delta=\min\begin{Bmatrix}\delta _{1};\delta _{2}\end{Bmatrix}[/latex]. Тогда условие [latex]|x-a|<\delta [/latex] более сильное чем (1) и (3) и поэтому оно влечет за собой условия (2) и (4).
    Следовательно [latex]|f(x)g(x)|=|f(x)||g(x)|<\frac{\varepsilon }{C}C =\varepsilon [/latex]

  5. Произведение конечного числа бесконечно малых функций при [latex]x\rightarrow a[/latex] есть бесконечно малая функция при [latex]x\rightarrow a[/latex]
  6. Доказательство
    Так как любая бесконечно малая функция [latex]f(x)[/latex] при [latex]x\rightarrow a[/latex] будет ограничена в некоторой [latex]\delta [/latex] окрестности точки [latex]a[/latex], то доказательство сводится к доказательству свойства 2.

Литература

  1. Тер-Киркоров А.М., Шабунин М.И., Курс математического анализа, физмат-лит, 2001. стр. 83

Следующая тема →

Бесконечно малые функции: 1 комментарий

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *