Теорема о вычислении площади поверхности вращения, следствия

Если на сегменте [latex][a,b] [/latex] функции [latex]f(x)[/latex] имеет непрерывную производную [latex]f^{‘}(x)[/latex], то поверхность [latex]M[/latex], образованная вращением графика этой функции вокруг оси [latex]Ox[/latex], квадрируема и её площадь [latex]P[/latex] может быть вычислена по формуле[latex]P=[/latex][latex]2\pi\int\limits_{a}^{b}f(x)\sqrt{1+f^{‘2}(x)}dx[/latex]
grafik1
Доказательство. Длина [latex]l_{i} [/latex] звена [latex]A_{i-1}A_{i} [/latex] ломанной [latex]A_{0}A_{1}…A_{n} [/latex] равна [latex]\sqrt{(x_{i}-x_{i-1})^{2}+(y_{i}-y_{i-1})^{2}}.[/latex] По формуле Лагранжа имеем [latex]y_{i}-y_{i-1}=[/latex][latex]f(x_{i})-f(x_{i-1})=[/latex][latex]f^{‘}(\xi)(x_{i}-x_{i-1}) [/latex]. Полагая [latex]x_{i}-x_{i-1}=\Delta_{x_{i}} [/latex]. Поэтому, согласно формуле,
[latex]P(x_{i})=[/latex][latex]2\pi\sum\limits_{i=1}^{n}f(\xi_{i})\sqrt{1+f^{‘2}}\Delta_{x_{i}}+[/latex][latex]\pi\sum\limits_{i=1}^{n}(y_{i-1}-f(\xi_{i}))\sqrt{1+f^{‘2}}\Delta_{x_{i}}+[/latex][latex]\pi\sum\limits_{i=1}^{n}(y_{i}-f(\xi_{i}))\sqrt{1+f^{‘2}}\Delta_{x_{i}},[/latex] Обозначим эту формулу [latex](**).[/latex] Первая сумма в правой части представляет собой интегральную сумму функции [latex]2\pi{f(x)\sqrt{1+f^{‘2}(x)}dx}[/latex], которая в силу условий утверждения интегрируема и имеет предел [latex]P=[/latex][latex]2\pi\int\limits_{a}^{b}f(x)\sqrt{1+f^{‘2}(x)}dx[/latex]. Докажем, что выражение в правой части [latex](**)[/latex] имеет предел, равный нулю. В самом деле, пусть [latex]\varepsilon>0[/latex]. Так как функция [latex]f(x)[/latex] равномерно непрерывны на сегменте [latex][a,b] [/latex], то по данному[latex]\varepsilon>0[/latex] можно указать такое [latex]\delta>0[/latex], что при [latex]\Delta<\delta[/latex][latex](\Delta=\max\Delta_{x_{i}})[/latex] выполняются неравенства [latex]|y_{i-1}-f(\xi_{i})|<\varepsilon[/latex] и [latex]|y_{i}-f(\xi_{i})|<\varepsilon[/latex]. Если [latex]T[/latex] — максимальное значение функции [latex]\sqrt{1+f^{‘2}(x)}[/latex] на сегменте [latex][a,b][/latex], то получаем
[latex]|\sum\limits_{i=1}^{n}((y_{i-1}-f(\xi_{i}))+[/latex][latex](y_{i}-f(\xi_{i})))\sqrt{{1+f^{‘2}(\xi_{i})}}\Delta_{x_{i}}|<[/latex][latex]2T\varepsilon\sum\limits_{i=1}^{n}\Delta_{x_{i}}=[/latex][latex]2T(b-a)\varepsilon.[/latex] В силу произвольности [latex]\varepsilon >0[/latex] предел указанного выражения равен нулю. Итак, мы доказали существование предела [latex]P[/latex] площадей [latex]P(x_{i})[/latex] и установили, что этот предел может быть вычислен по формуле [latex]P=[/latex][latex]2\pi\int\limits_{a}^{b}f(x)\sqrt{1+f^{‘2}(x)}dx[/latex].
Замечание 1.Квадрируемость поверхности вращения можно доказать при более слабых условиях. Достаточно потребовать, чтобы функция [latex]f^{‘}(x)[/latex] была определена и интегрируема на сегменте [latex][a,b].[/latex] Из этого предположения вытекает интегрируемость функции [latex]f(x)\sqrt{1+f^{‘2}(x)}.[/latex] Дальнейшее рассуждение ничем не отличается от рассуждений, проведенных при доказательстве утверждений этого пункта.
Замечание 2. Если поверхность [latex]M[/latex] получается посредством вращения вокруг оси [latex]Ox[/latex] кривой [latex]L[/latex], определяемой параметрическими уравнениями
[latex]x=\phi(t)[/latex], [latex]y=\psi(x)[/latex], [latex]\alpha\leq t\leq \beta,[/latex] то осуществляя замену переменных под знаком определенного интеграла в формуле
[latex]P=[/latex][latex]2\pi\int\limits_{a}^{b}f(x)\sqrt{1+f^{‘2}(x)}dx,[/latex] получим следующее выражение для площади [latex]P[/latex] этой поверхности [latex]P=[/latex][latex]2\pi\int\limits_{\alpha}^{\beta}\psi(t)\sqrt{\phi^{‘2}(t)+\psi^{‘2}(t)}dt.[/latex]
Пример 1.Найдем площадь [latex]P[/latex] поверхности эллипсоида вращения. Пусть эллипс [latex]\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1[/latex] вращается вокруг оси [latex]Ox[/latex]. Рассмотрим сначала случай [latex]a>b[/latex](вращение вокруг большой оси эллипса). Так как в этом случае [latex]f(x)=\frac{b}{a}\sqrt{a^{2}-x^{2}}[/latex], то полагая [latex]e=\sqrt{\frac{a^{2}-b^{2}}{a^{2}}}[/latex], найдем [latex]P=[/latex][latex]2\pi\int\limits_{-a}^{a}f(x)\sqrt{1+f^{‘2}(x)}dx=[/latex][latex]2\pi\frac{b}{a}\int\limits_{-a}^{a}\sqrt{a^{2}-e^{2}x^{2}}dx=[/latex][latex]2\pi b(b+\frac{a}{e}\arcsin e)[/latex]. Если [latex]a<b[/latex], то полагая [latex]e=\sqrt{\frac{b^{2}-a^{2}}{b^{2}}}[/latex] и проводя соответствующие вычисления, получим [latex]P=[/latex][latex]2\pi b(b+\frac{a^{2}}{2b}\ln\frac{1+e}{1-e})[/latex].
Пример 2. Найдем площадь [latex]P[/latex] поверхности, образованной вращением вокруг оси [latex]Ox[/latex] циклоиды, определяемой параметрическими уравнениями [latex]x=a(t- \sin t),[/latex] [latex]y=a(1-\cos t)[/latex], [latex]0\leq t\leq 2\pi[/latex]. По формуле [latex]P=[/latex][latex]2\pi\int\limits_{\alpha}^{\beta}\psi(t)\sqrt{\phi^{‘2}(t)+\psi^{‘2}(t)}dt[/latex]. Имеем [latex]P=[/latex][latex]2\pi\int\limits_{\alpha}^{\beta}\psi(t)\sqrt{\phi^{‘2}(t)+\psi^{‘2}(t)}dt=[/latex][latex]2\sqrt{2}\pi a^{2}\int\limits_{0}^{2\pi}(1-\cos t)^{\frac{3}{2}}dt=[/latex][latex]\frac{64}{3}\pi a^{2}[/latex].
Литература

  • В. А. Ильин, Э. Г. Позняк Основы математического анализа. Часть 1. 1982 год. Параграф 3, пункт 4. стр 379-380.
  • Вартанян Г. М. Конспект по математическому анализу.
  • Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. Часть 2, 1964 год, Параграф 2, стр. 214-217.
  • Вычислении площади поверхности вращения

    Вычислении площади поверхности вращения

    Таблица лучших: Вычислении площади поверхности вращения

    максимум из 18 баллов
    Место Имя Записано Баллы Результат
    Таблица загружается
    Нет данных

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *