Критерий равномерной сходимости в терминах точной верхней грани, критерий Коши

Теорема 1 (Критерий равномерной сходимости в терминах точной верхней грани)

Для того, чтобы последовательность функций [latex]f_{n}(x)[/latex], определенных на множестве [latex]E[/latex], сходилась равномерно к функции [latex]f(x)[/latex] на этом множестве, необходимо и достаточно, чтобы выполнялось условие:

[latex]\lim\limits_{n\rightarrow \infty}\underset{x\in E}{sup}\mid f_{n}(x)-f(x)\mid=0\quad (1)[/latex]

Необходимость

Пусть [latex]f_{n}\rightrightarrows f[/latex] на [latex]E[/latex]. Покажем, что [latex]\delta_{n}=\underset{x\in E}{sup}\mid f_{n}(x)-f(x)\mid\rightarrow 0[/latex] при [latex]n\rightarrow\infty[/latex].
Имеем, что [latex]\forall\varepsilon >0[/latex] существует такой номер [latex]\exists n_{\varepsilon}[/latex], что [latex]\forall n\geq n_{\varepsilon}[/latex] и [latex]\forall x\in X[/latex] выполняется неравенство:
[latex]\mid f_{n}(x)-f(x)\mid<\frac{\varepsilon}{2}[/latex]
Тогда [latex]\forall n\geq n_{\varepsilon}[/latex] будем иметь:
[latex]\underset{x\in X}{sup}\mid f_{n}(x)-f(x)\mid\leq\frac{\varepsilon}{2}<\varepsilon[/latex],
а это, согласно определению предела числовой последовательности, и означает выполнение условия (1).

Достаточность

Пусть справедливо условие (1). Докажем, что последовательность функций [latex]f_{n}(x)[/latex] равномерно сходится к функции [latex]f(x)[/latex].

Используя неравенство [latex]\mid f_{n}\left ( x \right )-f\left ( x \right )[/latex][latex]\mid\leq\delta_{n}[/latex] для [latex]x\in E[/latex], [latex]n\in N[/latex], мы получим, что [latex]\mid f_{n}(x)-f(x)\mid<\varepsilon[/latex], для [latex]x\in E[/latex], [latex]n\geq n_{\varepsilon}[/latex]. А это означает, что [latex]f_{n}(x)\rightrightarrows f(x)[/latex], [latex]x\in E[/latex].

Спойлер

Последовательность функций сходящихся к функции [latex]ln x[/latex]
risunok

[свернуть]

Теорема 2

(Критерий Коши равномерной сходимости последовательности)

Для того чтобы последовательность функций [latex]{f_{n}(x)}[/latex] сходилась равномерно на множестве [latex]E[/latex] необходимо и достаточно, чтобы выполнялось условие Коши:

[latex]\forall\varepsilon >0[/latex] [latex]\exists n_{\varepsilon}:\forall n\geq N_{\varepsilon}\quad\forall P\in N[/latex] [latex]\forall x\in E\Rightarrow\mid f_{n+p}(x)-f_{n}(x)\mid<\varepsilon\quad (2)[/latex]

Необходимость

Пусть [latex]f_{n}(x)\rightrightarrows f(x)[/latex], [latex]x\in E[/latex]. Следовательно, согласно определению равномерной сходимости можно утверждать, что:

[latex]\forall\varepsilon>0[/latex] [latex]\exists N_{\varepsilon}:\forall k\geq N_{\varepsilon}[/latex] [latex]\forall x\in E\Rightarrow\left | f_{k}\left ( x \right )-f\left ( x \right )\right |< \frac{\varepsilon}{2}\quad(4)[/latex]

Пусть теперь [latex]n\geq N_{\varepsilon}[/latex], [latex]p\in N[/latex].

Тогда:

[latex]\mid f_{n}(x)-f(x)\mid <\frac{\varepsilon}{2}[/latex] и [latex]\mid f_{n+p}(x)-f(x)\mid <\frac{\varepsilon}{2}[/latex]

Теперь, применяя неравенство треугольника, получим что:

[latex]\mid f_{n+p}(x)-f_{n}(x)\mid =\mid (f_{n+p}(x)-f(x))-(f_{n}(x)-f(x))\mid\leq\mid (f_{n+p}(x)-[/latex]

[latex]f\left ( x \right )\mid+\mid f_{n}\left ( x \right )[/latex][latex]-f\left ( x \right )\mid<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon\quad (5)[/latex]

Достаточность

Пусть дано, что выполняется условие Коши. Докажем равномерную сходимость последовательности функций.

Какое бы значение [latex]x[/latex] из [latex]X[/latex] не взяли, мы будем иметь числовую последовательность, для которой выполняется условие Коши. Следовательно, для этой последовательности существует конечный предел, что доказывает существование для последовательности предельной функции [latex]f\left ( x \right )[/latex].
Покажем, что последовательность [latex]{f_{n}}[/latex] сходится равномерно к функции [latex]f[/latex]
на множестве [latex]X[/latex]. Действительно, в силу условия (2), [latex]\forall\varepsilon>0[/latex] [latex]\quad\exists n_{\varepsilon}[/latex], что [latex]\forall n\geq n_{\varepsilon}[/latex], [latex]\forall p\geq 0[/latex] и [latex]\forall x\in X[/latex] справедливо неравенство

[latex]\mid f_{n+p}(x)-f_{n}(x)\mid<\frac{\varepsilon}{2}\quad (3)[/latex]
Заметив, что [latex]\lim\limits_{p\rightarrow\infty}f_{n+p}(x)=f(x)[/latex], перейдем к пределу в неравенстве (3) при [latex] p\rightarrow\infty[/latex]; тогда [latex]\forall n>n_{\varepsilon}[/latex] и [latex]\forall x\in X[/latex] получим
[latex]\mid f(x)-f_{n}(x)\mid<\frac{\varepsilon}{2}<\varepsilon[/latex],
а это и означает, что [latex]f_{n}\rightrightarrows f[/latex].

Источники:

Критерий равномерной сходимости в терминах точной верхней грани, критерий Коши

Тест для закрепления материала.

Таблица лучших: Критерий равномерной сходимости в терминах точной верхней грани, критерий Коши

максимум из 4 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Критерий равномерной сходимости в терминах точной верхней грани, критерий Коши: 1 комментарий

  1. — Меня смущает Ваш текст. Выглядит как бессвязный отрывочный пересказ части двенадцатой главы второго тома Фихтенгольца. Причем без указания его в списке литературы. Надеюсь, преподаватель матанализа разберется, когда Вы будете подписывать у него текст.
    — Нет рисунков.

Добавить комментарий для Igor Mazurok Отменить ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *