Равномерная сходимость и интегрирование

Пусть [latex]f_{n}[/latex] — последовательность интегрируемых на отрезке [latex]\left[a;b\right][/latex] функций, поточечно сходящаяся к функции [latex]f[/latex]. Поставим вопрос об интегрируемости на отрезке [latex]\left[a;b\right][/latex] предельной функции [latex]f[/latex] и справедливости равенства
$$ \lim_{n\rightarrow \infty }\int\limits_{a}^{b}f_{n}(x)dx=\int\limits_{a}^{b}f(x)dx $$
Следующие примеры показывают, что в общем случае и интегрируемости нет, и равенство не выполняется.

Пример 1

Пусть [latex]\left \{ r_{n} \right \}_{n=1}^{\infty }[/latex] — последовательность всех рациональных точек из отрезка [latex]\left[0;1\right][/latex]. Выразим:
$$f_{n}(x)=\left\{\begin{matrix}1,&x\in \left \{ r_{1},\cdots ,r_{n} \right \},\\ 0,& x\in \left[0;1\right]\setminus \left \{ r_{1},\cdots ,r_{n} \right \}\end{matrix}\right.$$
Тогда каждая функция [latex]f_{n}[/latex] интегрируема на отрезке [latex]\left[0;1\right][/latex], потому что она имеет лишь конечное число точек разрыва [latex]\left \{ r_{1},\cdots r_{n}\right \}[/latex]. С другой стороны, видно, что $$\lim_{n\rightarrow \infty }f_{n}(x)=D(x)$$ где D — функция Дирихле. Но как известно, функция Дирихле не интегрируема на отрезке [latex]\left[0;1\right][/latex].
Вывод: мы построили последовательность интегрируемых функций, сходящуюся к неинтегрируемой функции.

Замечание (для рядов)

Спойлер

Из примера 1 легко получить пример, который показывает, что сумма функционального ряда, слагаемые которого интегрируемы, не обязана быть интегрируемой.
Действительно, положим [latex]u_{n}(x)=f_{n}(x)-f_{n-1}(x)[/latex], [latex]u_{1}(x)=f_{1}(x)[/latex], [latex]u_{2}(x)=f_{2}(x)-f_{1}(x)[/latex].
Частичные суммы ряда [latex]s_{n}(x)=f_{n}(x)[/latex]. И [latex]\sum_{n=1}^{\infty }u_{n}(x)dx=f(x)[/latex].

[свернуть]

Пример 2

Положим [latex]f_{n}(0)=f_{n}(\frac{1}{n})=f_{n}(1)=0, f_{n}(\frac{1}{2n})=n[/latex], а на отрезках [latex]\left[0;\frac{1}{2n}\right], \left[\frac{1}{2n};\frac{1}{n}\right], \left[\frac{1}{n};1\right][/latex] функция [latex]f_{n}[/latex] — линейна. Мы видим, что [latex]\lim_{n\rightarrow \infty }f_{n}(x)=0,\; \forall x\in \left[0;1\right][/latex], так что предельная функция [latex]f(x)\equiv 0\; (x\in \left[0;1\right])[/latex] интегрируема и [latex]\int_{0}^{1}f(x)dx=0[/latex]. С другой стороны, очевидно, что [latex]\int_{0}^{1}f_{n}(x)dx=\frac{1}{2}[/latex], поэтому предельный переход под знаком интеграла недопустим.
Вывод: даже если предельная функция интегрируема, то предел интегралов не обязан равняться интегралу от предельной функции.

Замечание (для рядов)

Спойлер

Пример 2 позволяет построить ряд из интегрируемых функций такой, что предельная функция интегрирума, но равенство не выполняется.

[свернуть]

Вывод (для рядов)

Воспользовавшись этими примерами мы показали, что нельзя почленно интегрировать сходящийся ряд, т.е. равенство $$\int\limits_{a}^{b}\sum_{n=1}^{\infty }u_{n}(x)dx=\sum_{n=1}^{\infty }\int\limits_{a}^{b}u_{n}(x)dx$$
не верно. Потому что сумма поточечно сходящегося ряда из интегрируемых функций может оказаться неинтегрируемой функцией, а если даже сумма ряда будет функцией интегрируемой, то нужное равенство все равно нельзя гарантировать.

Теорема (об интегрировании равномерно сходящейся последовательности)

Пусть последовательность [latex] \left \{ f_{n}(x) \right \}[/latex] из непрерывных на отрезке [latex]\left[a;b\right ][/latex] функций, равномерно сходится к [latex]f(x)[/latex] на этом отрезке. Тогда существует $$ \lim_{n\rightarrow \infty }\int\limits_{a}^{b}f_{n}(x)dx=\int\limits_{a}^{b}f(x)dx $$

Доказательство

Спойлер

По теореме о непрерывности предела равномерно сходящейся последовательности непрерывных функций: f(x) – непрерывна на [a, b], а значит и интегрируема на этом отрезке. Воспользуемся определением равномерной сходимости: [latex]\forall \varepsilon > 0 \; \exists N \; \forall n\geq N[/latex] и [latex]\forall x\in \left [ a, b \right ][/latex] справедливо неравенство [latex]\left | f_{n}(x)-f(x) \right |< \frac{\varepsilon }{b-a}[/latex]. Проинтегрировав это неравенство, получаем, что при всех [latex]n\geq N : \left | \int_{a}^{b}f_{n}(x)dx — \int_{a}^{b}f(x)dx \right |\leq \int_{a}^{b}\left | f_{n}(x)-f(x) \right |dx< \frac{\varepsilon }{b-a}\left ( b-a \right )=\varepsilon [/latex]
Теорема доказана.

[свернуть]

Следствие (об интегрировании равномерно сходящегося ряда)

Пусть [latex]\left \{ u_{n} \right \}[/latex] — последовательность непрерывных на отрезке [latex]\left[a;b\right][/latex] функций такова, что ряд [latex]\sum_{n=1}^{\infty }u_{n}(x)[/latex] сходится равномерно на [latex]\left[a;b\right][/latex]. Тогда справедливо равенство $$\int\limits_{a}^{b}\sum_{n=1}^{\infty }u_{n}(x)dx=\sum_{n=1}^{\infty }\int\limits_{a}^{b}u_{n}(x)dx$$

Доказательство

Спойлер

Действительно, функции [latex]f_{n}(x)=\sum_{k=1}^{n}u_{k}(x)[/latex] непрерывны как суммы конечного числа непрерывных функций [latex]u_{k}[/latex], и последовательность [latex]\left \{ f_{n} \right \}[/latex] сходится к функции [latex]f(x)=\sum_{n=1}^{\infty }u_{n}(x)[/latex] равномерно на [latex]\left[a;b\right][/latex]. Тогда, по предыдущей теореме, $$\sum_{k=1}^{n}\int\limits_{a}^{b}u_{k}(x)dx=\int\limits_{a}^{b}\sum_{k=1}^{n}u_{k}(x)dx=\int\limits_{a}^{b}f_{n}(x)dx\rightarrow \int\limits_{a}^{b}f(x)dx=\int\limits_{a}^{b}\sum_{n=1}^{\infty }u_{n}(x)dx.$$

[свернуть]
Следующая теорема является обобщением всех теорем об интегрировании равномерно сходящейся последовательности.

Теорема

Пусть [latex]\left\{f_{n}\right\}[/latex] — последовательность интегрируемых на отрезке [latex]\left[a;b\right][/latex] функций, равномерно сходящаяся на этом отрезке к функции [latex]f[/latex]. Тогда предельная функция [latex]f[/latex] интегрируема на [latex]\left[a;b\right][/latex] и справедливо равенство $$\lim_{n\rightarrow \infty }\int\limits_{a}^{b}f_{n}(x)dx=\int\limits_{a}^{b}f(x)dx$$

Доказательство

Спойлер

Оно проводится также, как в предыдущей теореме, при условии, что [latex]\int_{a}^{b}f(x)dx[/latex] существует. Поэтому достаточно доказать лишь интегрируемость на [latex]\left[a;b\right][/latex] функции [latex]f[/latex]. Для этого воспользуемся критерием интегрируемости в терминах колебаний, согласно которому функция [latex]f[/latex] интегрируема на [latex]\left[a;b\right][/latex] тогда и только тогда, когда [latex]\forall \varepsilon > 0 \; \exists \delta > 0, \forall \prod[/latex] — разбиения отрезка [latex]\left[a;b\right][/latex], диаметр которого [latex]d\left ( \prod \right )< \delta [/latex], справедливо неравенство $$\sum_{i=0}^{s-1}\omega _{i}(f)\Delta x_{i}< \varepsilon$$ где [latex]\omega _{i}(f)[/latex] — колебания функции [latex]f[/latex] частичных отрезках [latex]\left[x_{i};x_{i+1}\right][/latex]. Зададим [latex]\varepsilon > 0[/latex] и, пользуясь равномерной сходимостью последовательности [latex]\left \{ f_{n} \right \}[/latex], найдем такое N, что [latex]\forall n\geq N,\; \forall x\in \left [ a;b \right ][/latex] справедливо неравенство [latex]\left | f_{n}(x)-f(x) \right |< \varepsilon [/latex]. Если [latex]\forall n\geq N[/latex], то $$\left | f(x’)-f(x») \right |\leq \left | f(x’)-f_{n}(x») \right |+\left | f_{n}(x’)-f_{n}(x») \right |+\left | f_{n}(x»)-f(x») \right |< \left | f_{n}(x’)-f_{n}(x») \right |+2\varepsilon$$ Отсюда следует, что при любом разбиении [latex]\omega _{i}(f)\leq \omega _{i}(f_{n})+2\varepsilon [/latex], так что $$\sum_{i=0}^{s-1}\omega _{i}(f)\Delta x_{i}\leq \sum_{i=0}^{s-1}\omega _{i}(f_{n})\Delta x_{i}+2\varepsilon \left ( b-a \right )$$ Первое слагаемое справа мало в силу интегрируемости [latex]f_{n}[/latex], т.е. [latex]\exists \delta > 0, \; \forall \prod ,\; d(\prod )< \delta [/latex], первое слагаемое справа будет меньшим, чем [latex]\varepsilon [/latex]. Поэтому, в силу критерия интегрируемости в терминах колебаний, получаем, что функция [latex]f[/latex] интегрируема на [latex]\left[a;b\right][/latex].
1

[свернуть]

Тесты

равномерная сходимость и интегрирование

Проверьте свои знания по теме «Равномерная сходимость и интегрирование»

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *