Теорема Вейерштрасса о равномерных приближениях непрерывных функций многочленами

Тригонометрическим многочленом степени $n$ называют бесконечно дифференцируемую и $2\pi$-периодическую функцию $$T_n(x) = \dfrac{a_0}{2} + \sum \limits_{k=1}^{n} a_k \cos kx + b_k \sin kx,$$ где $a_0, a_1, \ldots, a_n, b_1, \ldots, b_n$ — некоторые вещественные числа, $a_n \cdot b_n \neq 0$. Множество всех тригонометрических многочленов образует линейное пространство.

Теорема 1 (Вейерштрасса)

Любую непрерывную $2\pi$-периодическую функцию можно с любой степенью точности равномерно приблизить тригонометрическим многочленом, то есть для любого $\varepsilon > 0$ найдётся такой тригонометрический многочлен $T_n(x)$, что $$\max \limits_{-\infty < x < +\infty} \left| f(x) — T_n(x) \right| < \varepsilon.$$

Доказательство

Так, как сумма Фейера $\sigma_n(x)$ — это среднее арифметическое частичных сумм ряда Фурье функции $f(x)$, которые являются тригонометрическими многочленами, то она также будет тригонометрическим многочленом. В силу теоремы Фейера, для любого $\varepsilon > 0$ найдётся сумма Фейера $\sigma_n(x)$ такая, что $$\max \limits_{x \in \mathbb{R}} \left| f(x) — \sigma_n (x) \right| < \varepsilon.$$

Замечание

Непрерывную функция $f(x)$ на отрезке $[-\pi, \pi]$ можно равномерно приблизить на этом отрезке тригонометрическим многочленом в том и только том случае, когда $f(\pi) = f(-\pi)$.

Теорема 2 (Вейерштрасса)

Непрерывную на отрезке $[a, b]$ функцию $f(x)$ можно равномерно приблизить с любой степенью точности многочленом, то есть для любого $\varepsilon > 0$ найдётся многочлен $P_n(x) = a_0 + a_1 x + \ldots + a_n x^n$ такой, что $$\max \limits_{a \le x \le b} \left| f(x) — P_n(x) \right| < \varepsilon.$$

Доказательство.

Пусть $[a, b] = [0, \pi]$ и чётным образом продолжим функцию $f(x)$ на отрезок $[-\pi, 0]$, а затем на всю вещественную ось с периодом $2 \pi$. Получим чётную, $2 \pi$-периодическую непрерывную функцию, совпадающую с $f(x)$ на отрезке $[0, \pi]$ (рис.1).

Weierstrass-theorem

В силу теоремы Фейера для любого $\varepsilon > 0$ найдётся тригонометрический многочлен $T_m(x)$ такой, что $$\max \limits_{-\infty < x < +\infty} \left| f(x) — T_m(x) \right| < \dfrac{\varepsilon}{2}. (1)$$

Каждая из функций $\sin kx$ и $\cos kx$ является аналитической и поэтому раскладывается в степенной ряд, сходящийся на всей числовой прямой. Так как $T_m(x)$ — это конечная линейная комбинация функций $\sin kx$ и $\cos kx$, то $T_m(x)$ также раскладывается в степенной ряд, сходящийся для всех вещественных $x$, $$T_m(x) = c_0 + c_1 x + \ldots + c_n x^n + \ldots.$$

Известно, что на любом отрезке $[\alpha, \beta]$, лежащем внутри интервала сходимости, степенной ряд сходится равномерно. Следовательно, $\forall \varepsilon > 0$ существует такое $k$, что $$\max \limits_{0 \le x \le \pi} \left| T_m(x) — (c_0 + c_1 x + \ldots + c_k x^k) \right| < \dfrac{\varepsilon}{2}. (2)$$

Если положить $P_k (x) = c_0 + c_1 x + \ldots + c_k x^k$, то в силу (1) и (2) получаем $$\left| f(x) — P_k(x) \right| \le \left| f(x) — T_m(x) \right| + \left| T_m(x) — P_k(x) \right| \le$$ $$\le \max \limits_{-\infty < x < +\infty} \left| f(x) — T_m(x) \right| + \max_{0 \le x \le \pi} \left| T_m(x) — P_k(x) \right| < \dfrac{\varepsilon}{2} + \dfrac{\varepsilon}{2} = \varepsilon.$$

Следовательно, $$\max \limits_{0 \le x \le \pi} \left| f(x) — P_k(x) \right| < \varepsilon.$$

Пусть теперь функция $f(x)$ непрерывна на произвольном отрезке $[a, b]$. Положим $F(t) = f(a + \dfrac{t}{\pi} (b — a))$, $0 \le t \le \pi$.

Тогда функция $F(t)$ непрерывна на $[0, \pi]$ и её можно равномерно приблизить на $[0, \pi]$ многочленом $Q_k(t)$, т.е. $$\max \limits_{0 \le t \le \pi} \left| f(a + \dfrac{t}{\pi} (b — a)) — Q_k(t) \right| < \varepsilon. (3)$$

Полагая $x = a + \dfrac{t}{\pi} (b-a), P_k(x) = Q_k (\pi \dfrac{x — a}{b — a})$,
получаем из неравенства (3), что $$\max \limits_{a \le x \le b} \left| f(x) — P_k(x) \right| < \varepsilon.$$

Литература

Теорема Вейерштрасса о равномерных приближениях непрерывных функций многочленами

Тест по теме «Теорема Вейерштрасса о равномерных приближениях непрерывных функций многочленами».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *