5.1 Дифференцируемость и производная

$\DeclareMathOperator{\tg}{tg} \DeclareMathOperator{\sign}{sign} \DeclareMathOperator{\sgn}{sgn}$ Определение 1. Пусть функция $f$ определена на интервале $(a, b)$ и точка $x_0 ∈ (a, b).$ Если существует конечный предел $\displaystyle  \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$, то он называется производной функции $f$ в точке $x_0$ и обозначается $f^\prime(x_0)$, или $\displaystyle \frac{df}{dx}(x_0),$ $Df(x_0).$

Определение 2. Пусть функция $f$ определена на интервале $(a, b)$ и точка $x_0 ∈ (a, b).$ Функцию $f$ будем называть дифференцируемой в точке $x_0,$ если существует такая постоянная $A$ (зависящая от $x_0$ и не зависящая от $x$), что справедливо равенство: $$f(x) − f (x_0) = A (x − x_0) + r(x), $$где $r(x) = \overline{o} (x − x_0) \: \: \: (x \to x_0).$

Короче определение дифференцируемости можно записать в следующем виде: $$f(x) − f (x_0) = A (x − x_0) + \overline{o} (x − x_0) \: \: \: (x \to x_0).$$
Покажем, что эти два определения эквивалентны в том смысле, что дифференцируемость функции равносильна существованию производной.

Теорема. Функция $f$ дифференцируема в точке $x_0 ∈ (a, b)$ тогда и только тогда, когда у $f$ существует производная в точке $x_0.$

Пусть $f$ дифференцируема в точке $x_0.$ Это означает, что $f(x) − f (x_0) = A (x − x_0) + \overline{o} (x − x_0),$ где $A$ не зависит от $x$. Отсюда получаем:
$$\displaystyle \frac{f(x)-f(x_0)}{x-x_0} = A+\frac{\overline{o} (x − x_0)}{x-x_0}.$$
Тогда, учитывая определение символа $\overline{o}$, имеем
$$\displaystyle \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}=A+\lim_{x\to x_0} \frac{\overline{o} (x − x_0)}{(x − x_0)} =A$$ т. е. существует $f^\prime(x_0) = A.$
Обратно, если существует $$\displaystyle \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = f^\prime(x_0),$$ то $$ \displaystyle \frac{f(x)-f(x_0)}{x-x_0} + f^\prime(x_0) = r_1(x),$$ где $r_1(x) \to 0 (x \to x_0)$. Отсюда следует, что $$ f(x) — f(x_0) = f^\prime(x_0)(x-x_0)+r_1(x)(x-x_0).$$ Обозначим $r(x)=r_1(x)(x-x_0).$ Тогда $r(x)=\overline{o}(x-x_0),$ т. е. $$ f(x) − f (x_0) = f^\prime(x_0)(x-x_0)+\overline{o}(x-x_0) \: \: \: (x\to x_0), $$ а это и означает, что $f$ дифференцируема в точке $x_0$, причем $A= f^\prime(x_0).$

Итак, условие дифференцируемости равносильно наличию производной. Смысл дифференцируемости состоит в том, что в некоторой окрестности точки $x_0$ функция $f$ представима в виде линейной функции $l(x)= f (x_0)+f (x_0) f^\prime(x-x_0)$ приближенно с точностью до величины бесконечно малой более высокого порядка, чем $(x-x_0) $ при $x\to x_0.$

Связь между дифференцируемостью и непрерывностью устанавливает следующая

Теорема. Если функция $f$ дифференцируема в точке $x_0$, то она непрерывна в этой точке.

Дифференцируемость $f$ означает, что
$$ f(x) − f (x_0) = A(x_0)(x-x_0)+\overline{o}(x-x_0) \: \: \: (x\to x_0). $$
Отсюда следует, что $\displaystyle \lim_{x\to x_0} (f(x)-f(x_0)) = 0$, т. е. $\displaystyle \lim_{x\to x_0} f(x)=f(x_0)$, и тем самым теорема доказана.

Обратное утверждение неверно. Именно из непрерывности функции $f$ не следует ее дифференцируемость. Примером может служить функция $f(x)=|x|,$ непрерывная в точке $x_0 = 0$, для которой выражение $$\displaystyle \frac{f(x)-f(x_0)}{x-x_0} = \frac{|x|}{x} = \sign x $$ не имеет предела $x\to 0$ и, следовательно, функция $f$ не имеет производной в точке $x_0 = 0$. Значит, $ f$ не является дифференцируемой в нуле.

Итак, непрерывность – это необходимое, но не достаточное условие дифференцируемости. Другими словами, если функция разрывна в точке $x_0$, то она недифференцируема в этой точке. Обратное неверно.

С геометрической точки зрения производная $f^\prime(x_0)$ представляет собой тангенс угла наклона касательной к графику функции $y = f(x)$ в точке $M_0(x_0, f (x_0))$. При этом касательной к графику функции $f$ в точке $M_0$ называется предельное положение секущей $M_0M$ при стремлении точки $M (x, f(x))$ вдоль кривой $y = f(x)$ к точке $M_0$. В самом деле, если функция  $f$ дифференцируема в точке $x_0$, то при стремлении $M$ к $M_0$ вдоль кривой $y = f(x)$ секущая $M_0M$ имеет тангенс угла наклона, равный $$ \displaystyle \tg\alpha(x) = \frac{f(x)-f(x_0)}{x-x_0}, $$ и при $ x \rightarrow x_0 $ точка $M$ стремится к $M_0$ вдоль кривой $y = f(x)$. Так как $$\displaystyle  \frac{f(x)-f(x_0)}{x-x_0} \to f^\prime(x_0)  \: \: \: (x\to x_0), $$ то $\tg\alpha(x) \to f^\prime(x_0) $ при $x\to x_0$, т. е. секущая стремится занять некоторое предельное положение, тангенс угла наклона $\alpha_0$ которого равен $f^\prime(x_0)$.Отсюда получаем уравнение касательной к графику дифференцируемой в точке $x_0$ функции $y = f(x):$ $$k(x)=f(x_0)+f^\prime(x_0) (x-x_0).$$

Примеры решения задач

  1. Найти производную $f(x) = \sin x $ в точке $x_0 = 0.$
    Решение

    Пример можно легко решить, пользуясь определением производной, а так же первым замечательным пределом:
    $ \displaystyle \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}= \lim_{x\to 0} \frac{\sin x — \sin 0}{x-0}=\lim_{x\to 0} \frac{\sin x }{x}=1.$

  2. Пусть $f(x) = x^{2}$ Тогда производная $f^\prime(x_0)$ равна?
    Решение

    $\displaystyle f^\prime(x_0) = \lim_{x\to x_0} \frac{x^2-x^2_0}{x-x_0} = \lim_{x\to x_0} \frac{(x-x_0)(x+x_0)}{x-x_0}=$
    $\displaystyle = \lim_{x\to x_0} (x+x_0) = 2x_0$

  3. Пусть $f(x) = \left|x \right |$ и если $x_0 \neq 0$ существует ли $f^\prime(x_0)$?
    Решение

    $f^\prime(x_0) = \sgn x_0$, где $\sgn$ обозначает функцию знака. А если $x_0 = 0$ $f^\prime_+(x_0)=1,$ $f^\prime_-(x_0)=-1,$ а следовательно $f^\prime(x_0)$ не существует.

  4. Найдите уравнение касательной к графику функции $y=e^{2x-3}$ в точке $x_0 = 5,$ а также угол наклона касательной в этой точке.
    Решение

    Известно, что уравнение касательной в точке имеет вид $l={f}\left(x_{0}\right)+{f}’\left(x_{0}\right)\left(x-x_{0}\right),$ причём ${f}’\left(x_{0}\right)=\mathrm{tg}\alpha,$ где $\alpha$ — угол наклона касательной.
    Находим значение касательной в точке 5, получаем ${f}^\prime\left(x\right)=2e^{2x-3},$ а в точке $x_{0}=5: \, {f}^\prime\left(5\right)=2e^{7} \Rightarrow$ $l = e^{7}+2e^{7}\left(x-5\right) =$
    $ -9e^{7}+2e^{7}x$, $\alpha = \mathrm{arctg}\left(2e^{7}\right).$

  5. Найдите по определению $\sin x.$ на множестве $\mathbb{R}$
    Решение

    Воспользуемся определением производной $(\sin x)^\prime:$
    $
    (\sin x)^\prime = \displaystyle \lim_{\Delta x\to 0} \frac{\sin(x+\Delta x)-\sin x}{\Delta x} = \\
    = \displaystyle \frac{2\sin \frac{\Delta x}{2}\cdot \cos(x+\frac{\Delta x}{2})}{\Delta x} = \\
    = \displaystyle \frac{\sin \frac{\Delta x}{2}}{\frac{\Delta x}{2}} \cdot \cos(x+\frac{\Delta x}{2})
    $
    Теперь сделаем подстановку $ \displaystyle \frac{\Delta x}{2} = t$ . При $\Delta x \to 0, $ $t \to 0.$ Применим первый замечательный предел:
    $ \displaystyle \lim_{\Delta x\to 0} \frac { \sin \frac{\Delta x}2}{\frac{\Delta x}2} = \lim_{t\to 0} \frac{\sin t}{t} = 1.$
    Сделаем такую же подстановку $\displaystyle \frac{\Delta x}{2} = t$ и используем свойство непрерывности:
    $\displaystyle \lim_{\Delta x\to 0} \left ( \cos x + \frac{\Delta x}{2} \right) = \lim_{t\to 0} \cos (x+t)= \cos x.$

Смотрите также

  1. Тер-Крикоров А. М., Шабунин М.И. Курс математического анализа: Учеб. пособие для вузов. – 3-е изд., исправл. / А. М. Тер-Крикоров, М.И. Шабунин. – Москва: ФИЗМАТЛИТ, 2001. – 672 с. — с. 123-133.
  2. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 1 / Г. М. Фихтенгольц. — 5-е изд., стереотип. — Москва: Физматгиз, 1962. — 607 с. — с. 186-214.
  3. Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. — 5-е изд., перераб. и доп. — Москва: Дрофа, 2003. — 703 с. — с.271-280.

Дифференцируемость и производная

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме «Дифференцируемость и производная».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *