М4. О равенстве медианы и высоты

Задача из журнала «Квант» (1970 год, 1 выпуск)

Условие

Дан отрезок $AB$. Найти на плоскости множество точек $C$ таких, что в треугольнике $ABC$ медиана, проведенная из вершины $A$, равна высоте, проведенной из вершины $B$.

 

Решение

Введём прямоугольную систему координат с началом в точке $A$, пусть точка $B$ имеет координаты $(2;0)$, а искомая точка $C$ — координаты $(x;y)$. Пусть $AF$ — медиана в треугольнике $ABC$, $BK \bot AC$ (рис.1). Легко показать, что точка F имеет координаты $\left(\frac{x+2}{2};\frac{y}{2}\right)$. Тогда $FA^{2}=\left(\frac{x+2}{2} \right)^{2}+\frac{y^{2}}{4}$.

рис. 1

По условию $BK^{2}=AF^{2}$, поэтому из подобия треугольников $AKB$ и $ACD$ следует, что $\frac{BK^{2}}{AK^{2}} = \frac{CD^{2}}{AD^{2}}$ или

$\frac{ \left(\frac{x+2}{2}\right )^{2}+\frac{y^{2}}{4} }{4-\left[ \left(\frac{x+2}{2} \right)^{2}+\frac{y^{2}}{4}\right]} = \frac{y^{2}}{x^{2}}$

Преобразовывая предыдущее равенство, получим:

$y^{4}+\left(2x^{2}+4x-12\right)\cdot y^{2}+\left(2x+x^{2}\right)^{2}=0$

Это и есть уравнение, связывающее координаты искомых точек. Может показаться, что оно определяет кривую четвертого порядка, нарисовать которую довольно трудно, но на самом деле левая часть уравнения легко раскладывается на множители:

$\left[\left(x+1\right)^{2}+\left(y+\sqrt{3}\right)^{2}-4\right] \left[\left(x+1\right)^{2}+\left(y-\sqrt{3}\right)^{2}-4\right]=0$

Задача решена.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *