М698. Задача о центрах прямоугольников

Условие

На сторонах [latex]a, b, c, d[/latex] вписанного в окружность четырехугольника «наружу» построены прямоугольники размерами [latex]a\times c, b\times d,[/latex][latex]c\times a, d\times b[/latex]. Докажите, что центры этих прямоугольников являются вершинами а)параллелограмма, б)прямоугольника.

Решение


а) Пусть [latex]M, P, N, Q[/latex] — центры прямоугольников, построенных на сторонах [latex]AB, BC, CN, DA[/latex] вписанного четырехугольника [latex]ABCD[/latex] (см. рисунок).
Поскольку в четырехугольнике, вписанном в окружность, суммы противоположных углов равны [latex]180\textdegree[/latex] , а прямоугольники, построенные на противоположных сторонах, конгруэнтны, то [latex]\angle MBP = \angle NDQ[/latex] и [latex]\angle NCP = \angle MAQ[/latex] (мы рассматриваем углы, меньшие [latex]180\textdegree[/latex]). Таким образом, треугольник [latex]MBP[/latex] подобен [latex]NDC[/latex] и треугольник [latex]NCP[/latex] подобен [latex]MAQ[/latex]. Отсюда [latex]\mid MP \mid = \mid NQ \mid[/latex] и [latex]\mid NP \mid = \mid MQ \mid[/latex], а это означает, что четырехугольник [latex]MPNQ[/latex] — параллелограмм.
б) Можно считать, что сторона [latex]MQ[/latex] параллелограмма видна из точки [latex]A[/latex] изнутри параллелограмма, сторона [latex]PN[/latex] видна из точки [latex]C[/latex] снаружи и, аналогично, сторона [latex]MP[/latex] видна из точки [latex]B[/latex] изнутри, а сторона [latex]NQ[/latex] из точки [latex]D[/latex] видна снаружи. Тогда расположение всех отрезков и треугольников будет таким, как показано на рисунке. Докажем, что, [latex]\angle MPN + \angle NQM = 180\textdegree[/latex] (отсюда будет следовать, что [latex]\angle MPN = \angle NQM = 90\textdegree[/latex]). Эта сумма, очевидно, равна [latex]\angle BPC + \angle DQA = 180\textdegree[/latex], поскольку [latex]\angle BPM = \angle DQN[/latex], а [latex]\angle CPN = \angle AQM[/latex].

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *