М749* Задача на различные доказательства неравенства

Задача из журнала «Квант»(1982 год, 6 выпуск)

Условие

a) Докажите, что если $x_1, x_2, x_3$— положительные числа, то $$\frac{x_1}{x_2 + x_3} + \frac{x_2 }{x_3+x_1} + \frac{x_3}{x_1 + x_2} \ge \frac{3}{2};$$ при каком условии то неравенство превращается в равенство?

б) Докажите, что если $x_1, x_2,…,x_n (n ≥ 4)$ — положительные числа, то

$$\frac{x_1}{x_2 + x_n} + \frac{x_2}{x_3 + x_1} + … + \frac{x_{n-1}}{x_n + x_{n-2}} + \frac{x_n}{x_1 + x_{n-1}} \ge 2.$$ причем равенство возможно только при $n = 4.$

в) Докажите, что при $n>4$ неравенство пункта б) является точным в том смысле, что ни при каком $n$ число $2$ в правой части нельзя заменить на большее.

А. Прокопьев

Решение

a) Пусть $ a=x_2+x_3, b=x_3+x_1, c=x_1+x_2.$ Тогда $x_1=\frac{b+c-a}{2},$ $x_2 = \frac{a+c-b}{2},$ $x_3=\frac{a+b-c}{2}, $ и левая часть неравенства перепишется так: $ \frac{b+c-a}{2a}+\frac{a+c-b}{2b}+\frac{a+b-c}{2c}=$ $\frac{1}{2}(\frac{b}{a}+\frac{a}{b})+\frac{1}{2}(\frac{c}{a}+\frac{a}{c})+\frac{1}{2}(\frac{b}{c}+\frac{c}{b})-\frac{3}{2}.$ Каждая из скобок в этом выражении, не меньше $2$ в силу известного неравенства $x + \frac{1}{x} \ge 2$ при $x > 0.$ Поэтому вся левая часть не меньше $3-\frac{3}{2} = \frac{3}{2}.$ А так как $x + \frac{1}{x} = 2$ только при $x = 1,$ доказанное неравенство обращается в равенство только при $a = b = c.$

б) Докажем неравенство индукцией по $n.$ При $n = 4$ оно очевидно: $$\frac{x_1}{x_2+x_4}+\frac{x_2}{x_3+x_1} + \frac{x_3}{x_4+x_2}+\frac{x_4}{x_1+x_3} = \frac{x_1+x_3}{x_2+x_4}+\frac{x_2+x_4}{x_1+x_3} \ge 2$$ равенство возможно в том и в только в том случае, когда $x_1 + x_3 = x_2 + x_4.$

Докажем теперь неравенство для произвольных положительных чисел $ x_1, …, x_{n + 1},$ предполагая, что оно справедливо для любых $ n (n \ge 4)$ положительных чисел. Выберем наименьшее из чисел $ x_1, …, x_{n + 1}.$ Поскольку они входят в неравенство симметрично, можно, не ограничивая общности, считать, что это $ x_{n + 1}.$ Тогда $x_{n+1} > 0,$ $x_{n+1} \le x_n$ и $x_{n + 1} \le x_1,$ и поэтому $$\frac{x_1}{x_2 + x_{n+1}} + \frac{x_2}{x_3+x_1} + … + \frac{x_n}{x_{n + 1}+x_{n- 1}}+$$ $$ +\frac{x_{n+1}}{x_1+x_n}> \frac{x_1}{x_2+x_n}+\frac{x_2}{x_3 + x_1} + … + \frac{x_n}{x_1 + x_{n-1}} \ge 2 $$

(последнее неравенство выполняется по предположению индукции). Попутно получаем, что при $n>4$ равенство невозможно.

в) Числа $x_1, …, x_n$ удобно расставлять по окружности; тогда каждое слагаемое в левой части рассматриваемого неравенства есть одно из этих чисел, деленное на сумму двух соседних с ним. При $n = 2k$ определим $x_i$ так, как показано на рисунке 1, а при $n = 2k+1$ — как на рисунке 2.

 

В первом случае получим сумму $$2(\frac{1}{q+1}+ \frac{q}{q^2+1}+\frac{q^2}{q^3+q}+ … + \frac{q^{k-1}}{q^{k-1}+q^{k-2}})= 2(1 + \frac{(k-2)q}{g^2+1}),$$

а во втором —

$$ \frac{1}{2q} + 2(\frac{q}{q^2+1} + \frac{q^2}{q^3 + q} + … + \frac{q^k}{q^k+q^{k-1}})=\frac{1}{2q} + \frac{2(k-1)q}{q^2+1}-\frac{2q}{q+1}=$$ $$=2+(\frac{1}{2q} + \frac{2(k-1)q}{q^2+1} — \frac{2}{q+1}).$$

В обоих случаях при достаточно большом $q$ значение левой части будет сколь угодно близко к $2$, поэтому число $2$ в неравенстве на большее заменить нельзя.

А. Егоров

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *