Ф2. Задача о пружинном маятнике

Условие

На горизонтальной плоскости лежат два шарика с массами $m_1$ и $m_2$, скреплённые между собой пружиной с жёсткостью $c$. Плоскость гладкая. Шарики сдвигают, сжимая пружину, затем их одновременно отпускают. Определите периоды возникших колебаний шариков.

Решение

Центр масс системы не должен двигаться (или может двигаться равномерно и прямолинейно), поэтому шарики колеблются в противофазе с одинаковой частотой, а их отклонения $x_1$ и $x_2$ от положения равновесия удовлетворяют соотношению $c_1x_1 = c_2x_2$, где $c_1$ и $c_2$ — коэффициенты жесткости соответствующих кусков пружины длиной $l_1$ и $l_2$ ($l_1$ и $l_2$ — расстояния от шариков до центра масс системы; $$\left.l_1 = l \frac{m_2}{m_1+m_2}, l_2 = l \frac{m_1}{m_1+m_2}\right).$$

Удлинение $^1/q$-й части пружины всегда в $q$ раз меньше удлинения всей пружины, т.е. $^1/q$-я часть пружины имеет жёсткость в $q$ раз большую, чем жёсткость всей пружины. Поэтому $c = \frac{m_1+m_2}{m_2}$. Отсюда следует, что период колебаний шариков
$$T = 2\pi\sqrt{\frac{m_1m_2}{\left(m_1+m_2\right)c}}.$$

Интересно проверить ответ, взяв какой-нибудь предельный случай. Предположим, что масса $m_2$ очень велика: $m_2\gg m_1$. Тогда шарик с массой $m_1$ должен колебаться так, как если бы второй шар был не подвижно закреплён, и $T = 2\pi\sqrt{\frac{m_1}{c}}$.

Проверим нашу формулу
$$T = 2\pi\sqrt{\frac{m_1}{c\left(1+\frac{m_1}{m_2}\right)}} \simeq 2\pi\sqrt{\frac{m_1}{c}}.$$

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *