12.8.1 Квадратичные формы

Определение. Квадратичной формой на $\mathbb{R}^{n}$ называется каждая функция вида
$$Q\left(h\right) = \sum_{i,j=1}^{n} a_{ij}h^{i}h^{j}, $$
где $a_{ij}$ — действительные числа. Матрица $\left(a_{ij}\right)$ называется матрицей квадратичной формы.

Будем считать, что $a_{ij}=a_{ji},$ т. е. что матрица $\left(a_{ij}\right)$ симметрична. Заметим, что $Q$ — это многочлен второго порядка от $n$ переменных $h_{1},\cdots ,h_{n}.$ Ясно, что для любого действительного числа $t$
$$Q\left(th\right) = t^{2}Q\left(h\right). $$

Это свойство называется свойством однородности второго порядка.

Определение Квадратичная форма $Q$ называется положительно определенной, если для любого $h \neq 0$ справедливо неравенство $Q\left(h\right) \gt 0.$

Аналогично, если для любого $h \neq 0$ имеем $Q\left(h\right)\lt 0,$ то такая квадратичная форма называется отрицательно определенной.

Если квадратичная форма принимает как положительные, так и отрицательные значения, то такая квадратичная форма называется неопределенной.

Если $Q\left(h\right)\geqslant 0$ для всех $h,$ то форма называется положительно полуопределенной, а если $Q\left(h\right)\leqslant 0$ для всех $h,$ то форма называется отрицательно полуопределенной.

Квадратичная форма называется знакоопределенной, если она положительно определенная или отрицательно определенная.

Пример 1. Если $Q\left(x^{1},x^{2}\right) = (x^{1})^{2} + 2(x^{2})^{2},$ то для всех $x^{1},x^{2}$ кроме $x^{1}=x^{2}=0$, имеем $Q\left(x^{1},x^{2}\right) \gt 0,$ т.е. эта форма положительно определенная.
Пример 2. Если $Q\left(x^{1},x^{2}\right) = (x^{1})^{2} — x^{1}x^{2} — (x^{2})^{2}$ имеем $Q(1,0)=1, Q(0,1)= -1, $ так что эта форма неопределенная.
Пример 3. Если $Q\left(x^{1},x^{2}\right) = (x^{1})^{2} — 2x^{1}x^{2} + (x^{2})^{2}$ положительно полуопределенная, поскольку для любых $x^{1},x^{2}$ имеем $Q\left(x^{1},x^{2}\right) \geqslant 0,$ но равенство $Q\left(x^{1},x^{2}\right) = 0$ имеет место не только в точке $x^{1}=x^{2}=0,$ а в каждой точке вида $x^{1}=x^{2}$.
Пример 4. Форма $Q\left(h\right) = (h^{1})^{2} + \cdots + (h^{n})^{2} = |h|^{2},$ очевидно, положительно определенная.
Пример 5. Пусть $Q\left(h\right) = (h^{1})^{2} + \cdots + (h^{m})^{2},$ где $m \lt n$. Эта форма положительно полуопределенная, поскольку $Q(h) \geqslant 0 $, но при $i\gt m$ значений этой формы на стандартном векторе $e_{i}$ равно нулю.
Пример 6. Пусть $Q\left(h\right) = (h^{1})^{2} + \cdots + (h^{m})^{2} — (h^{m+1})^{2} — \cdots — (h^{n})^{2},$ где $m \lt n$. Тогда эта форма неопределенная, поскольку $Q(e_{i})=1$ при $i\leqslant m$ и $Q(e_{i})=-1,$ если $i\gt m.$

Для любой квадратичной формы $Q$ $$|Q(h)| \leqslant \sum_{i,j=1}^{n} |a_{i j}| |h^{i}| |h^{j}| \leqslant | h^{2} | \sum_{i,j=1}^{n} |a_{i j}| \equiv K | h^{2} |.$$

Эта оценка показывает, что при $h \rightarrow 0$ квадратичная форма стремится к нулю. Если квадратичная форма знакоопределенная, то полученный порядок стремления к нулю оказывается точным. Именно, справедлива

Лемма 1. Пусть $Q$ — положительно определенная квадратичная форма на $\mathbb{R}^{n}$. Тогда существует такое положительное число $\lambda ,$ что $$Q(h) \geqslant \lambda |h|^{2} (h \subset \mathbb{R}^{n}). $$
Обозначим через $S$ единичную сферу в $\mathbb{R}^{n},$ т.е. $$ S=\left\{x \in \mathbb{R}^{n} : |x|=1\right\}.$$Легко видеть, что $S$ — замкнутое и ограниченное множество и, следовательно, компактное. Поэтому, по второй теореме Вейерштрасса, непрерывная функция $Q$ достигает своего наименьшего значения, которое мы обозначим через $\lambda.$ Но на $S$ форма $Q$ принимает положительные значения, так что $\lambda \gt 0.$
Итак, $Q(x)\geqslant \lambda (|x|=1).$ Если теперь $h$ — произвольный вектор из $\mathbb{R}^{n},$ то положим $ x = \frac{h}{|h|}.$ Тогда $|x|=1,$ т.е. $x$ лежит на единичной сфере, а поэтому $Q(x)\geqslant \lambda .$ Если вместо $x$ подставим его значение, то получим $Q(\frac{h}{|h|})\geqslant \lambda .$ Воспользовавшись свойством однородности второго порядка для формы $Q$, имеем $Q(h)\geqslant \lambda|h|^{2}.$

Теперь займемся таким вопросом. Как по матрице коэффициентов квадратичной формы судить о знакоопределенности формы? Рассмотрим подробно случай $n=2.$

Пусть $Q(h,k)=a_{11}h^{2}+2a_{12}hk+a_{22}k^{2}.$ Предположим сначала, что $a_{11}\neq 0.$ Тогда $$Q(h,k)=\frac{1}{a_{11}}(a_{11}^{2} h^{2}+2a_{11}a_{12}hk+a_{11}a_{22}k^{2}) = \frac{1}{a_{11}}\left[(a_{11}h+a_{12}k)^{2}+\triangle k^{2} \right],$$ где
$$\triangle = a_{11}a_{22}-a_{12}^{2} = \begin{vmatrix}a_{11} & a_{12} \\a_{21} & a_{22} \end{vmatrix}.$$

  1. Если $\triangle \gt 0,$ то выражение в квадратных скобках положительно для любых $h$ и $k,$ не равных одновременно нулю, т.е. $Q(h,k)\neq 0,$ причём $sign (Q(h,k)) = sign (a_{11}).$ В этом случае форма является знакоопределенной, она сохраняет свой знак.
  2. Рассмотрим случай $\triangle \lt 0.$ Пусть, например, $k\neq 0.$ Тогда вынося за скобки $k^{2}$ и обозначая $t=\frac{h}{k},$ получаем $$ Q(h,k) = k^{2}\left[a_{11}t^{2}+2a_{12}t+a_{22} \right].$$ Если $a_{11}\neq 0,$ то в скобках имеем квадратный трёхчлен относительно $t.$ Его дискриминант $-4\triangle \gt 0.$ Поэтому этот квадратный трёхчлен имеет различные действительные корни, а значит принимает, как и положительные, так и отрицательные значения.

    Если же $a_{11}=0,$ то $a_{12}\neq 0$(так как иначе бы получили, что $\triangle = 0$). Значит, в квадратных скобках линейный двучлен $2a_{12}t+a_{22},$ который также принимает как положительные, так и отрицательные значения.

    Итак, если $\triangle \lt 0,$ то квадратичная форма $Q$ является неопределенной.

  3. Пусть $\triangle = 0.$ Если $a_{11}\neq 0,$ то получим $$Q(h,k) = \frac{1}{a_{11}}(a_{11}h+a_{12}k)^{2}.$$ Если, например, $a_{11} \gt 0,$ то всегда $Q(h,k) \geqslant 0,$ а при $h = -\frac{a_{12}k}{a_{11}}$ имеем $Q(h,k)=0.$ Это означает, что существуют ненулевые векторы, на которых форма обращается в нуль, и получаем, что форма полуопределена.

    Если же $a_{11}=0,$ то в этом случае $\triangle = -a_{12}^{2}.$ Значит $a_{12}=0$ и $Q(h,k) = a_{22}k^{2}.$ Это — тоже полуопределенная форма.

Итак, если $\triangle = 0,$ то форма полуопределенная.

Окончательно приходим к следующему выводу.

Лемма 2. Пусть

$Q(h,k)=a_{11}h^{2}+2a_{12}hk+a_{22}k^{2}.$ и $\triangle = a_{11}a_{22}-a_{12}^{2} $

Тогда:

1) если $\triangle \gt 0$, то форма $Q$ — знакоопределенная, причём $sign (Q) = sign (a_{11});$

2) если $\triangle \lt 0 ,$ то $Q$ — неопределенная форма.

2) если $\triangle = 0 ,$ то $Q$ — полуопределенная форма.

Определение. Пусть $Q(h)=\sum_{i,j=1}^{n}a_{ij}h^{i}h^{j}$ — квадратичная форма на $\mathbb{R}^{n}$ с симметричной матрицей $$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}.$$

Миноры этой матрицы, расположенные в её левом верхнем углу, называют главными минорами, т.е. главные миноры — это $$
\triangle_{1} = a_{11}, \triangle_{2} = \begin{vmatrix}a_{11} & a_{12} \\a_{21} & a_{22} \end{vmatrix}, \cdots , \triangle_{n} =\begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots \ \\ a_{n1} & \cdots & a_{nn} \end{vmatrix}.
$$

Критерий Сильвестра. Для того, чтобы квадратичная форма $Q$ была положительно определенной, необходимо и достаточно, чтобы все её главные миноры были положительными.

Критерий отрицательной определенности. Для того, чтобы квадратичная форма $Q$ была отрицательно определенной, необходимо и достаточно, чтобы были выполнены следующие условия: $-\triangle_{1} \gt 0,\triangle_{2} \gt 0,\cdots ,(-1)^{n}\triangle_{n} \gt 0,$ т.е. главные миноры должны иметь чередующиеся знаки, причём первый должен быть отрицательным.

Эти два критерия здесь мы доказывать не будем.

Примеры решения задач

  1. Найти матрицу квадратичной формы $$Q(x_{1},x_{2},x_{3}) = 2x_{1}^{2} — 4x_{1}x_{2} + x_{2}^{2} + 2x_{1}x_{3} — x_{3}^{2}$$
    Решение
    1. Запишем квадратичную форму в виде $$Q(x_{1},x_{2},x_{3}) = 2x_{1}^{2} — 2x_{1}x_{2} — 2x_{2}x_{1} + x_{2}^{2} + x_{1}x_{3} + x_{3}x_{1} — x_{3}^{2}.$$
    2. Здесь $a_{11}=2,a_{12}=-2,a_{13}=1,a_{21}=-2,a_{22}=1,a_{23}=0,a_{31}=1,a_{32}=0,a_{33}=-1,$ следовательно, матрица этой квадратичной формы есть $$\begin{pmatrix} 2 & -2 &1 \\ -2 & 1 & 0 \\ 1 & 0 & -1\\ \end{pmatrix}.$$
  2. Установить характер знакоопределенности квадратичной формы $$Q(x_{1},x_{2},x_{3})=4x_{1}^{2}+6x_{2}^{2}+2x_{3}^{2}+6x_{1}x_{2}$$

    Решение
    1. Найдём матрицу квадратичной формы $$A = \begin{pmatrix} 4 & 3 & 0 \\ 3 & 6 & 0 \\ 0 & 0 & 2\\ \end{pmatrix}.$$
    2. Теперь проверим знакоопределенность формы по критерию Сильвестра $$
      \triangle_{1} = 4 \gt 0, \triangle_{2} = \begin{vmatrix}4 & 3 \\3 & 6 \end{vmatrix} = 15 \gt 0, \triangle_{3} =\begin{vmatrix} 4 & 3 & 0 \\ 3 & 6 & 0 \\ 0 & 0 & 2\\ \end{vmatrix} = 2\cdot15 = 30 \gt 0,$$ значит, квадратичная форма положительно определенная.
  3. Найти все значения $\lambda,$ при которых положительно определена квадратичная форма $$Q(x_{1},x_{2},x_{3}) = 2x_{1}^{2} + \lambda x_{2}^{2} + 5x_{3}^{2} + 4x_{1}x_{2} + 4x_{1}x_{3}. $$

    Решение
    1. Найдём матрицу квадратичной формы $$A = \begin{pmatrix} 2 & 2 & 2 \\ 2 & \lambda & 0 \\ 2 & 0 & 5\\ \end{pmatrix}.$$
    2. Найдём главные миноры: $$
      \triangle_{1} = 2 , \triangle_{2} = \begin{vmatrix}2 & 2 \\2 & \lambda \end{vmatrix} = 2\lambda — 4 , \triangle_{3} =\begin{vmatrix} 2 & 2 & 2 \\ 2 & \lambda & 0 \\ 2 & 0 & 5\\ \end{vmatrix} = 6\lambda — 20.$$

    3. По критерию Сильвестра, $Q$ положительно определена тогда и только тогда, когда $$\begin{cases}2\lambda -4 \gt 0, \\6\lambda — 20 \gt 0\end{cases}\Leftrightarrow \lambda \gt \frac{10}{3}.$$

Проверка знаний по пройденной теме

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме.

Список использованной литературы

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *