14.3 Условный экстремум

Определение. Пусть $f $– действительная функция, заданная на открытом множестве $E ⊂ R^n,$ $M-p$-мерное многообразие, содержащееся в $E$. В точке $x_0 ∈ M$ функция $f$ имеет условный максимум на многообразии $M,$ если существует такая окрестность $U ⊂ E$ точки $x_0,$ что для всех $x ∈ U ∩ M$ выполняется неравенство $f(x)≤f(x_0).$ Условный максимум называется строгим, если окрестность можно выбрать настолько малой, что для всех $x ∈ U ∩M,$ $x \ne x_0,$ будет выполнено строгое неравенство $f(x)< f(x_0).$ Аналогично определяется понятие условного минимума.

Пример. Пусть $f(x, y) = xy.$ В начале координат эта функция не имеет обычного экстремума, поскольку в любой окрестности начала координат она принимает как положительные, так и отрицательные значения. Возьмем теперь многообразие $M_1 : y = x.$ На этом многообразии $f(x, y) = x^2$ и в точке $(0, 0)$ функция f имеет условный минимум на многообразии $M_1.$ Если взять $M_2 : y = −x,$ то на нем $f(x, y) = −x^2,$ и теперь функция $f$ имеет условный максимум в точке $(0, 0).$ Итак, функция f в начале координат не имеет экстремума, а на многообразиях $M_1$ и $M_2$ имеет условные минимум и максимум, соответственно.

 

Теорема (необходимое условие экстремума на многообразии). Пусть $f$– действительная функция, заданная на открытом множестве $E ⊂ R^n,$ содержащем многообразие $M$. Пусть в точке $x_0 ∈ M$ функция $f$ имеет условный экстремум и дифференцируема в этой точке. Тогда производная $f'{}(x_0)$ обращается в нуль на касательном пространстве $T_{x0}(M),$ т. е.$f'{} (x_0)·h = 0$ для любого $h ∈ T_{x0}(M).$

Пусть $h$ – касательный вектор, т. е. $h ∈ T_{x0}(M).$ Тогда существует такая функция $γ : R \to M,$ $γ(0) = x_0,$ что $γ'{}(0) = h.$ Рассмотрим функцию $g(t) = f(γ(t)) (t ∈ R).$ Если $f$ в точке $x_0$ имеет условный максимум, то при $t = 0$ функция $g$ имеет обычный локальный максимум. Функция $g$ дифференцируема в точке $t = 0$ и, по теореме о производной сложной функции,

$g'{}(0)= f'{}(γ(0))·γ'{} (0) = f'{}(x_0)·h$

С другой стороны, по теореме Ферма, $g'{}(0)=0.$ Итак, $f'{}(x_0)·h=0.$

Геометрический смысл теоремы. Предположим, что функция $f$ класса $C^1$ и рассмотрим множество

$H = ${$x:f(x)= f(x_0)$}

Это множество называется множеством уровня функции $f.$ Предположим, что $f'{}(x)\ne 0$ для всех $x ∈ H.$ Тогда получим, что $H – (n − 1)$- мерное многообразие, т. е. гиперповерхность. Касательное пространство к многообразию $H$ определяется как совокупность всех векторов $h,$ для которых выполнено равенство $f'{}(x_0)·h = 0.$ Доказанная теорема утверждает, что $p$-мерное подпространство $T_{x0}(M)$ содержится в $(n−1)$-мерной гиперплоскости $T_{x0}(H).$ Другими словами, касательная гиперплоскость к $H$ в точке $x_0$ содержит касательную $p$-плоскость к $M$ в этой точке.

Заметим, что доказанная теорема дает лишь необходимое условие экстремума. Можно показать, что достаточным оно не является.

Метод множителей Лагранжа. Пусть $M – p$-мерное многообразие, точка $x_0 ∈ M$ и в окрестности $U$ этой точки $M$ определено уравнением $ϕ(x) = 0,$ где $ϕ = (ϕ^1, …, ϕ ^{n−p} ),$ $rank$ $ϕ'{}(x) = n − p$ для любого $x ∈ U.$

Теорема. Пусть $f$ – действительная функция в некоторой окрестности многообразия $M,$ дифференцируемая в точке $x_0 ∈ M$ и имеющая в этой точке условный экстремум. Тогда существуют такие действительные числа $λ_1,…, λ_{n−p},$ что для функции

$F(x) = f(x) + λ_1ϕ^1(x) + … + λ_{n−p}ϕ^{n−p}(x)$

полная производная $F'{}(x_0) = 0.$

В силу предыдущей теоремы, $f'{}(x_0)·h = 0$ для любого $h ∈ T_{x0} (M).$ Это равносильно тому, что $grad$ $f(x_0)·h = 0$ для любого $h ∈ T_{x0} (M), $т. е. $grad$ $f(x_0)$ ортогонален к любому касательному вектору. Значит, этот градиент является нормальным вектором к многообразию $M$ в точке $x_0.$ Как известно, векторы $grad$ $ϕ^i (x_0) (i = 1, …, n − p)$ образуют базис в пространстве нормальных векторов. Значит, существуют числа $α_1, …, α_{n−p}$ такие, что

$grad$ $(f(x_0)) = α^1$ $grad$ $( ϕ^1 (x_0) + … + α_{n−p})$ $grad$ $(ϕ^{n−p} (x_0)).$

Обозначим $λ_i = −α_i, i = 1, …, n−p.$ Тогда видим, что для $F$ ее градиент $grad$ $F(x_0) = 0,$ а это равносильно тому, что $F'{}(x_0) = 0,$ и тем самым теорема доказана.

Числа $λ_1, …, λ_{n−p}$ называются множителями Лагранжа. Они определяются однозначно, так как являются координатами разложения вектора $grad$ $ f(x_0)$ по базису из векторов $grad$ $ϕ^i (x_0) (i = 1, …, n − p),$ взятых с противоположным знаком. Условие $rank $ $ϕ'{}(x) = n − p$ обеспечивает линейную независимость векторов $grad$ $ϕ^i (x_0) (i = 1, …, n − p).$

В качестве примера, иллюстрирующего метод множителей Лагранжа, рассмотрим следующую задачу. Найти расстояние от точки до гиперплоскости в пространстве $R^n.$
Решение

Гиперплоскость $H$ определяется уравнением

$ a_1x ^1 + … + a_nx^n = b,$

или в векторной форме $ax = b,$ где $a \ne 0,$ ибо, в противном случае, не получим гиперплоскость.

Пример. Пусть $x_0 ∈ R^n.$ Покажем, что расстояние от заданной точки $x_0$ до $H$ равно $d(x_0, H) = \frac{|ax_0−b|}{|a|}.$ Расстояние от $x_0$ до произвольной точки $x ∈ H$ выражается следующим образом:
Решение

$\sqrt{(x^1 − x^1_0 )^2 + … + (x^n − x^n_0 )^2}.$

Поэтому для нахождения минимума этих расстояний достаточно рассмотреть подкоренное выражение и найти его минимум.

Обозначим $f(x) = (x^1 − x^1_0 )^2 + … + (x^n − x^n_0 )^2 .$ Составим функцию Лагранжа

$ F(x) = f(x) + λ(ax − b) = f(x) + λ(a_1x^1 + … + a_nx ^n − b).$

Находим все частные производные функции $F$ и приравниваем их к нулю. Получаем

$ \left \{\begin{matrix} 2(x^1 − x^1_0 ) + λa_1 = 0,\\ ………………… \\ 2(x^n − x^n_0 ) + λa_n = 0, \\a_1x^1 + … + a_nx^n = b \end{matrix}\right.$

Последнее уравнение этой системы означает, что точка x лежит на гиперплоскости $H.$ Умножим $i$-е уравнение этой системы на $a_i (i = 1, …, n)$ и сложим первые $n$ уравнений. Тогда получим

$ 2 \sum_{i=1}^n (a_ix^i − a_ix^i_0 ) + λ\sum^n_{i=1} a^2_i = 0,$

или, учитывая последнее уравнение системы,

$ 2(b − ax_0) + λ|a|^2 = 0.$

Отсюда находим

$ λ = \frac{2(ax_0 − b)} {|a|^2}.$

Подставим найденное значение $λ$ в первые $n$ уравнений системы и получим

$2(x^i − x^i_0 ) = −a_i\frac{ 2(ax_0 − b) }{|a|^2} (i = 1, …, n).$

Каждое из этих равенств возведем в квадрат и сложим полученные равенства. Получим

$ f(x) = \frac{(ax_0 − b)^2} {|a|^2} ,$

а это и есть квадрат искомого расстояния.

Пример. Найти точки условного экстремума функции (если они есть) $f(x,y) = y_{2} — x_{2}$ при уравнении связи $y = 2x.$
Решение

Имеем $f(x, 2x) = 3x^{2},$ т.е. при выполнении уравнений связи данная функция является функцией одного переменного и достигает минимума при $x = 0.$
Значению $x = 0$ согласно уравнению связи соответствует значение $y = 0,$ а поэтому функция $f(x,y) = y_{2} — x_{2}$ имеет в точке $(0, 0)$ условный минимум относительно уравнения связи $y = 2x.$

Литература

Условный экстремум

Проверьте, насколько хорошо вы усвоили эту тему и закрепите свои знания по ней, пройдя тест.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *