4.1 Непрерывные функции. Определение и примеры

Определение. Пусть функция $f$ определена на интервале $(a, b)$ и точка $x_0 \in (a, b)$. Говорят, что функция $f$ непрерывна в точке $x_0$, если $$\lim\limits_{x \to x_0}f(x) = f(x_0).$$

Замечание. В отличие от определения предела функции $f$ в точке $x_0$, здесь мы требуем, чтобы функция $f$ была определена не только в проколотой окрестности точки $x_0$, а в целой окрестности точки $x_0$. Кроме того, $\lim\limits_{x \to x_0}f(x)$ не просто существует, а равен определенному значению, а именно, $f(x_0)$.

Используя определение предела функции в смысле Коши, определение непрерывности функции $f$ в точке $x_0$ в кванторах можно записать следующим образом: $$\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) > 0: \forall x \in (a, b): |x — x_0| < \delta \Rightarrow \Big|f(x) — f(x_0)\Big| < \varepsilon.$$

В этом определении можно не требовать выполнения условия $|x — x_0| > 0$, т. к. при $|x − x_0| = 0$ неравенство $\Big|f(x) − f(x_0)\Big| < \varepsilon$, очевидно, выполнено.

Так как величина $\lim\limits_{x \to x_0}f(x)$ зависит лишь от тех значений, которые функция $f$ принимает в сколь угодно малой окрестности точки $x_0$, то непрерывность – это локальное свойство функции.

В терминах окрестностей определение непрерывности выглядит следующим образом.

Определение. Функция $f$ называется непрерывной в точке $x_0$, если для любой окрестности $V$ точки $f(x_0)$ найдется такая окрестность $U$ точки $x_0$, что для всех $x \in U$ значение $f(x) \in V$, т. е. $f\Big(U \cap (a, b)\Big) \subset V$.

Применяя определение предела функции в смысле Гейне, определение непрерывности можно сформулировать так.

Определение. Функция $f$, определенная на интервале $(a, b)$, называется непрерывной в точке $x_0 \in (a, b)$, если любая последовательность аргументов $\{x_n\}$ $\Big(x_n \in (a, b), x_n \to x_0\Big)$ порождает последовательность значений функции $\{f(x_n)\}$, стремящуюся к $f(x_0)$.

Применяя понятие, одностороннего предела (т. е. предела слева и справа) в точке $x_0$, можно дать определения непрерывности слева (справа) в точке $x_0$. Именно, функция $f$ называется непрерывной слева (справа) в точке $x_0$, если $\lim\limits_{x \to x_0-0}f(x) = f(x_0)$ $\Big(\lim\limits_{x \to x_0+0}f(x) = f(x_0)\Big).$ При этом в определении непрерывности слева достаточно считать, что функция $f$ определена лишь в левой полуокрестности точки $x_0$, т. е. на $(a, x_0]$, а для
непрерывности справа – на $[x_0, b)$.

Легко видеть, что справедливо следующее

Утверждение. Для того чтобы функция $f$ была непрерывной в точке $x_0$, необходимо и достаточно, чтобы $f$ была непрерывной слева и справа в точке $x_0.$

Определение. Функция $f$, определенная на интервале $(a, b)$, называется разрывной в точке $x_0 \in (a, b)$, если $f$ не является непрерывной в этой точке.

Итак, функция $f$ является разрывной в точке $x_0$, если выполнено одно из двух следующих условий.

  1. Либо не существует $\lim\limits_{x \to x_0}f(x)$.
  2. Либо предел $\lim\limits_{x \to x_0}f(x)$ существует, но он не равен $f(x_0)$.

Пример 1. $f(x) ≡ C = Const$. Эта функция непрерывна в каждой точке $x_0 \in \mathbb{R}$, т. к. для любого $x \in \mathbb{R}$ $\Big|f(x) − f(x_0)\Big| = 0$.

Пример 2. $f(x) = x^2$, $-\infty \lt x \lt +\infty$, $x_0 \in \mathbb{R}$. Зададим $\varepsilon > 0$. Тогда из неравенства $$|x^2 — {x_0}^2| \leqslant \Big(|x| + |x_0|\Big)|x − x_0|$$ следует, что при $|x − x_0| < \delta = \min\Big(1, \frac{\varepsilon}{2|x_0| + 1}\Big)$ справедливо неравенство $|x^2 — {x_0}^2| < \varepsilon$, т. е. $\lim\limits_{x \to x_0}x^2 = {x_0}^2$, а значит, функция $f(x) = x^2$ непрерывна в любой точке $x_0 \in \mathbb{R}$.

Пример 3. $f(x) = \sqrt{x}$, $0 \leqslant x \leqslant +\infty$ Если $x_0 \in (0, +\infty)$, то $$\Big|\sqrt{x} — \sqrt{x_0}\Big| = \frac{|x — x_0|}{\sqrt{x} + \sqrt{x-0}} \leqslant \frac{1}{\sqrt{x_0}}|x — x_0| \lt \varepsilon$$ если только $|x − x_0| \lt \delta \equiv \sqrt{x_0} \cdot \varepsilon$. Таким образом, функция $f(x) = \sqrt{x}$ непрерывна в каждой точке $x_0 \gt 0$. В точке $x_0 = 0$ можно ставить вопрос о непрерывности справа. Имеем $\Big|\sqrt{x} — \sqrt{0}\Big| = \sqrt{x} \lt \varepsilon$, если только $0 \leqslant x \lt \delta \equiv \varepsilon^2$. Итак, $\lim\limits_{x \to 0+}\sqrt{x} = 0 = \sqrt{0}$, т. е. функция $f(x) = \sqrt{x}$ непрерывна справа в точке $0$.

Пример 4. $f(x) = \sin x$, $-\infty \lt x \lt +\infty$. Пусть $x_0 \in \mathbb{R}$. Тогда $$|\sin x − \sin x_0| = \bigg|2\cos{\frac{x + x_0}{2}}\sin{\frac{x — x_0}{2}}\bigg| \leqslant 2\bigg|\sin{\frac{x — x_0}{2}}\bigg| \leqslant |x — x_0|,$$ где последнее неравенство в этой цепочке следует из доказанного выше неравенства $|\sin t| \leqslant |t|$ ($0 \lt |t| \lt \frac{\pi}{2}$). Можем считать, что $|x − x_0| \lt \pi$. Тогда при $|x − x_0| \lt \delta \equiv \min(\pi, \varepsilon)$ справедливо $|\sin{x} − \sin{x_0}| \lt \varepsilon$, т. е. функция $f(x) = \sin{x}$ непрерывна в каждой точке $x_0 \in \mathbb{R}$. Аналогично доказываем, что функция $f(x) = \cos{x}$ непрерывна в каждой точке $x_0 \in \mathbb{R}$.

Пример 5. $f(x) = x \cdot \sin{\frac{1}{x}}$ при $x \neq 0$ и $f(0) = 0$. Покажем, что функция $f$ непрерывна в точке $x_0 = 0$. Имеем $f(0) = 0$ и $$\lim\limits_{x \to 0}f(x) = \lim\limits_{x \to 0}x\sin{\frac{1}{x}} = 0$$ (т. к. $\Big|f(x) − 0\Big| = \Big|x\sin{\frac{1}{x}}\Big| \leqslant |x| \lt \varepsilon$, если только $|x − 0| = |x| \lt \delta \equiv \varepsilon$). Итак, $\lim\limits_{x \to x_0}f(x) = f(0)$, так что $f$ непрерывна в точке $0$.

Пример 6. $f(x) = \text{sign}\;x$, $x \in \mathbb{R}$. Если $x_0 \neq 0$, то функция $f$ постоянна в некоторой окрестности точки $x_0$ и, следовательно, непрерывна в этой точке. Если же $x_0 = 0$, то не существует предела функции $f$ при $x \to 0$. Значит, функция $f$ разрывна в точке $0$. Более того,$\lim\limits_{x \to 0+}\text{sign}\; x = 1$, $\lim\limits_{x \to x_0}f(x)\text{sign}\;x = −1$, $\text{sign}\;0 = 0$, так что функция $\text{sign}\; x$ разрывна в точке $0$ как слева, так и справа.

Пример 7. Рассмотрим функцию Дирихле $$\mathcal{D}(x) =
\begin{cases}
1, & \text{если $x \in \mathbb{Q}$;} \\
0, & \text{если $x \in {\mathbb{R} \backslash \mathbb{Q}}$.}
\end{cases}$$ Пусть $x_0 \in \mathbb{R}$. Покажем, что не существует предела функции $\mathcal{D}$ при $x \to x_0$. Для этого выберем последовательность $\{x^\prime\}$ отличных от $x_0$ рациональных чисел, стремящуюся к $x_0$. Тогда $\mathcal{D}(x^\prime_n) = 1$ и, значит, $\lim\limits_{n \to +\infty}\mathcal{D}(x^\prime_n) = 1$. Если же взять последовательность ${x^{\prime\prime}_n}$ отличных от $x_0$ иррациональных чисел, стремящуюся к $x_0$, то получим, что $\mathcal{D}(x^{\prime\prime}_n) = 0$ и $\lim\limits_{n \to +\infty}\mathcal{D}(x^{\prime\prime}_n) = 0$. В силу определения предела функции по Гейне получаем, что функция $\mathcal{D}$ не имеет предела в точке $x_0$. Так как $x_0 \in \mathbb{R}$ – произвольная точка, то это означает, что функция Дирихле разрывна в каждой точке.

Пример 8. $f(x) = x \cdot \mathcal{D}(x)$, $x \in \mathbb{R}$. Функция $f$ разрывна в каждой точке $x_0 \neq 0$. В самом деле, если $\{x^\prime_n\}$ и $\{x^{\prime\prime}_n\}$ соответственно последовательности рациональных и иррациональных отличных от $x_0$ чисел, стремящиеся к $x_0$, то $\lim\limits_{n \to \infty}f(x^{\prime}_n) = x_0$ и $\lim\limits_{n \to \infty}f(x^{\prime\prime}_n) = 0$, так что, в силу определения предела функции по Гейне, функция $f$ не имеет предела в точке $x_0$. Если же $x_0 = 0$, то $\lim\limits_{n \to 0}f(x) = 0 = f(0)$. Действительно, $|f(x)| = |x \cdot \mathcal{D}(x)| \leqslant |x| \lt \varepsilon$, если только $|x − 0| = |x| \lt \delta \equiv \varepsilon$. Это означает, что данная функция непрерывна в единственной точке $x_0 = 0$.

Пример 9. Дана функция $$f(x) =
\begin{cases}
\frac{\sin x}{x}, & \text{если $x \neq 0$;} \\
1, & \text{если $x = 0$.}
\end{cases}$$ Проверить на непрерывность в точке $x_0 = 0$.

Решение

$$\lim\limits_{x \to x_0 — 0}\frac{\sin x}{x} = \lim\limits_{x \to 0 + 0}\frac{\sin x}{x} = 1 = f(x_0)$$ Отсюда следует, что $f(x)$ непрерывна в точке $x_0$, т. к. для того чтобы функция $f$ была непрерывной в точке $x_0$, необходимо и достаточно, чтобы $f$ была непрерывной слева и справа в точке $x_0.$

Пример 10. Покажите, что функция $f(x) = \frac{x + 3}{x — 2}$ разрывна в точке $x_0 = 2.$

Решение

Для этого достаточно показать, что предел данной функции при $x \to x_0$ либо не равен значению функции в точке $x_0$, либо не существует. $$\lim\limits_{x \to 2 — 0}\frac{x + 3}{x — 2} = -\infty$$ $$\lim\limits_{x \to 2 + 0}\frac{x + 3}{x — 2} = +\infty$$ Т. к. левосторонний и правосторонний пределы $f(x)$ не совпадают, то предела функция в точке $x_0$ не имеет, следовательно она разрывна в этой точке.

Литература

Непрерывные функции. Определение и примеры

Тест по теме: «Непрерывные функции. Определение и примеры.»


Таблица лучших: Непрерывные функции. Определение и примеры

максимум из 5 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *