8.5 Площадь поверхности тела вращения

Пусть на отрезке $\left[a,b\right]$ задана неотрицательная непрерывно дифференцируемая функция $f$. Будем вращать ее график вокруг оси $Ox$. В результате получим некоторую поверхность. Выведем формулу для вычисления ее площади.

Рассмотрим разбиение отрезка $\left[a,b\right]$ точками $a = x_{0} < x_{1} < . . . < x_{n}$. Вращая криволинейную трапецию, ограниченную графиком функции $y = f(x), x_{i} \leqslant x \leqslant x_{i+1}$, получим усеченный «конус» с образующей $y = f(x)$ и радиусами оснований $f(x_{i})$ и $f(x_{i+1})$. Соединим точки $\left(x_{i},f\left(x_{i}\right)\right)$ и $\left(x_{i+1},f\left(x_{i+1}\right)\right)$ отрезком. В результате вращения получим усеченный конус с теми же радиусами оснований и этим отрезком в качестве образующей. Площадь боковой поверхности этого конуса равна
$$2\pi\frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2}l_{i},$$
где $l_{i}=\sqrt{\left(\Delta x_{i}\right)^{2}+\left(f\left(x_{i+1}\right)-f\left(x_{i}\right)\right)^{2}}$ — длина образующей. Складывая, получаем
$$\sigma\equiv2\pi\sum\limits_{i=0}^{n-1}{\frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2}l_{i}}.$$

При стремлении к нулю диаметра разбиения сумма σ стремится к определенному пределу, который естественно считать площадью поверхности вращения. С другой стороны, если в выражении для $l_{i}$ применить формулу Лагранжа, то получим
$$\sigma=2\pi\sum\limits_{i=0}^{n-1}{\frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2}\sqrt{1+\left[f^{\prime}\left(\xi_{i}\right)\right]^{2}}\Delta x_{i}},$$
где $\xi_{i}\epsilon\left[x_{i},x_{i+1}\right]$. Заменим в правой части $x_{i}$ и $x_{i+1}$ на $\xi_{i}$ и оценим погрешность. Имеем
$$\mid\sigma-2\pi\sum\limits_{i=0}^{n-1}{f\left(\xi_{i}\right)}\sqrt{1+\left[f^{\prime}\left(\xi_{i}\right)\right]^{2}}\Delta x_{i}\mid\leqslant2\pi\sum\limits_{i=0}^{n-1}\omega_{i}\sqrt{1+M^{2}}\Delta x_{i}$$
где $ω_{i}$ – колебание функции $f$ на $\left[x_{i},x_{i+1}\right]$, а $M$ – верхняя грань функции $\mid f^{\prime}\mid$ на $\left[a,b\right]$. Из условий на функцию $f$ следует, что правая часть стремится к нулю вместе с диаметром разбиения. Поэтому сумма $\sigma$ стремится к $2\pi\int\limits_{a}^{b} f\left(x\right)\sqrt{1+\left[f^{\prime}\left(x\right)\right]^{2}}{\text{d}x}$.

Итак, получили следующую формулу для нахождения площади поверхности вращения:
$$S=2\pi\int\limits_{a}^{b} f\left(x\right)\sqrt{1+\left[f^{\prime}\left(x\right)\right]^{2}}{\text{d}x}.$$

Примеры решения задач

  1. Найти площадь поверхности, образованной вращением вокруг оси $Ox$ дуги кубической параболы $y=x^{3}$, заключенной между прямыми $x=0$ и $x=1$.
    Решение

    $P=2\pi\int\limits_{a}^{b} f\left(x\right)\sqrt{1+\left(f^{\prime}\left(x\right)\right)^{2}}dx=2\pi\int\limits_{0}^{1}x^{3}\sqrt{1+\left(3x^{2}\right)^{2}}dx=$
    $=2\pi\int\limits_{0}^{1}x^{3}\sqrt{1+9x^{4}}dx=\begin{bmatrix}t=1+9x^{4} \\dt=36x^{3}dx \end{bmatrix}=$
    $=2\pi\int\limits_{1}^{10} \sqrt{t}\frac{\text{d}t}{36}=\frac{\pi}{18}\int\limits_{1}^{10} \sqrt{t}{\text{d}t}=\frac{\pi}{18}\cdot\frac{2}{3}t^{\frac{3}{2}}\mid^{10}_{1}=\frac{\pi}{27}\left(10\sqrt{10}-1\right)$

  2. Вычислить площадь поверхности, которая образована вращением кривой $y^{2}=4+x$, которая отсекается прямой $x=2$ вокруг оси $Ox$.
    Решение

    $P=2\pi\int\limits_{a}^{b} \psi\left(t\right)\sqrt{\left(\varphi^{\prime}\left(t\right)\right)^{2}+\left(\psi^{\prime}\left(t\right)\right)^{2}}=2\pi\int\limits_{-4}^{2} y\sqrt{1+\left(y^{\prime}\right)^2}\text{d}x=$
    $=2\pi\int\limits_{-4}^{2} \sqrt{\left(4+x\right)\left(1+\frac{1}{4(4+x)}\right)}\text{d}x=\pi\int\limits_{-4}^{2} \sqrt{17+4x}{\text{d}x}=$
    $=\frac{\pi}{6}\left(125-1\right)=\frac{62}{3}\pi$

  3. Вычислить площадь поверхности тела вращения, заданными такими уравнениями: $x\left(t\right)=3\cos t$, $y\left(t\right)=3\sin t$.
    Решение

    $P=2\pi\int\limits_{a}^{b} y\left(t\right)\sqrt{\left(x^{\prime}\left(t\right)\right)^{2}+\left(y^{\prime}\left(t\right)\right)^{2}}\text{d}x=2\pi\int\limits_{0}^{\pi} 3\sin t\cdot3\text{d} t=$
    $=\frac{\pi}{6}\left(17+4x\right)^{\frac{3}{2}}\mid^{2}_{-4}=-18\pi \left(\cos t\right)\mid^{\pi}_{0}=-18\pi\cdot\left(\cos \pi-\cos 0\right)\mid^{\pi}_{0}=$
    $=-18\pi\left(-1-1\right)=36\pi$

Площадь поверхности тела вращения

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме.

  1. Лысенко З.М. Конспект лекций по математическому анализу
  2. В.И.Коляда, А.А.Кореновский. Курс лекций по математическому анализу т.1. Одесса, «Астропринт», 2010, стр 253-254
  3. Б.П.Демидович. Сборник задач и упражнений по математическому анализу, 13-ое издание, Московского университета, 1997, стр. 419-421

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *