18.1.2 Несобственные интегралы II рода (интегралы от неограниченных функций)

Пусть функция $f$ задана на полуинтервале $[a, b)$, где $-\infty\lt a \lt b \lt +\infty$ и интегрируема по Риману на любом отрезке $[a,\xi]$, где $a\lt\xi\lt b$. Если существует конечный предел $\lim\limits_{\xi\to b-0}\int_a^\xi f(x) dx$, то несобственный интеграл второго рода $\int_a^b f(x) dx$ называют сходящимся и полагают $$\int_a^b f(x) dx=\lim\limits_{\xi\to b-0}\int_a^\xi f(x) dx.$$ В противном случае несобственный интеграл называют расходящимся.

Замечание 1. Предполагается, что функция $f$ неограничена в любой левой полуокрестности точки $b$. Действительно, если функция $f$ ограничена на $[a, b)$ и интегрируема на каждом отрезке $[a,\xi]$ при любом $\xi\lt b$, то, используя критерий интегрируемости функции в смысле Римана в терминах колебаний, легко можно показать, что функция $f$ интегрируема по Риману на отрезке $[a, b]$ (в самой точке $b$ функцию можно доопределить произвольным образом и это не влияет ни на свойство функции быть интегрируемой, ни на величину интеграла Римана $\int_a^b f(x) dx)$.

Замечание 2. Если функция $f$ интегрируема по Риману на отрезке $[a, b]$, то, как было установлено ранее, интеграл с переменным верхним пределом $\varphi(\xi)=\int_a^\xi f(x) dx$ является непрерывной на $[a, b]$ функцией. В частности, существует $\lim\limits_{\xi\to b-0}\varphi(\xi)=\int_a^b f(x)dx$. Это означает, что для интегрируемой в смысле Римана функции интеграл в несобственном смысле также существует и их значения совпадают.

Если функция $f$ неограничена в любой левой полуокрестности точки $b$, то эту точку называют особой точкой и говорят, что в точке $b$ функция имеет особенность. Иногда это обозначают так: $\int_a^{(b)} f(x)dx$. Аналогично определяется $\int_{(a)}^b f(x)dx$ с особенностью в точке $a$. Т.е., полагаем
$$\int_{(a)}^b f(x)dx=\int_a^b f(x)dx=\lim\limits_{\eta\to a+0}\int_\eta^b f(x) dx,$$
если предел справа существует. В этом случае интеграл называют сходящимся, в противном случае – расходящимся.

Пример 1. У интеграла $\int_0^1\frac{dx}{\sqrt{1-x^2}}$ имеется особенность в точке $x=0$. Имеем
$$\int_{0}^1 \frac{dx}{\sqrt{1-x^2}}=\lim\limits_{\xi\to {1-0}} \int_{0}^{\xi} \frac{dx}{\sqrt{1-x^2}} = \lim\limits_{\xi\to {1-0}}\arcsin\xi = \arcsin 1=\frac{\pi}{2}.$$

Пример 2. Рассмотрим интеграл $\int_{0}^1\frac{dx}{x^ \alpha}.$ при $\alpha\gt 0$.
Он имеет особенность в точке $x=0$. При $\alpha\neq 1$ имеем: $$ \int_\eta^1 \frac{dx}{x^{\alpha}}=\frac{1}{1-{\alpha}} x^{1-{\alpha}}\bigg|_{\eta}^1=\frac{1}{1-{\alpha}}-\frac{\eta^{1-\alpha}}{1-{\alpha}},$$ а если $\alpha=1$, то $$ \int_{\eta}^1 \frac{dx}{x^{\alpha}}=\ln x\bigg|_\eta^1=\ln\frac{1}{\eta}.$$

Если $\alpha\lt 1$, то существует $$\lim\limits_{\eta \to {0+}}\int_{\eta}^1 \frac{dx}{x^{\alpha}} = \frac{1}{1-\alpha}.$$

Если же $\alpha\geqslant 1$, то предел $\lim\limits_{\eta \to {0+}}\int_{\eta}^1 \frac{dx}{x^{\alpha}}$ не существует. Следовательно, $$ \int_\eta^1 \frac{dx}{x^{\alpha}} = \frac{1}{1-{\alpha}} (\alpha\lt 1)$$
и интеграл расходится при $\alpha\geqslant 1$.

Интеграл с несколькими особенностями определяется как сумма интегралов по таким промежуткам, на каждом из которых имеется лишь одна особенность. При этом интеграл называют сходящимся, если сходятся все
интегралы указанной суммы. Если хотя бы один из них расходится, то и исходный интеграл называют расходящимся.

Пример. Интеграл $\int_{-\infty}^{+\infty}\frac {dx}{\sqrt{x} \sqrt[3]{x-1} \sqrt[4]{x-2}}$ определяется как
$$ \int_{-\infty}^{+\infty}\frac {dx}{\sqrt{x} \sqrt[3]{x-1} \sqrt[4]{x-2}}=\int_{-\infty}^a + \int_a^0 + \int_0^b + \int_b^1 + \int_1^c + \int_c^2 + \int_2^d + \int_d^{+\infty},$$ где $ -\infty \lt a \lt 0 \lt b \lt 1 \lt c \lt 2 \lt d \lt +\infty$.

Примеры решения задач

Пример 1

Вычислить интеграл $\int_{0}^1\frac{dx}{x}.$
\underline {Решение:}

Для данного интеграла особой точкой является точка $0$. $$\int_{0}^1 \frac{dx}{x}=\lim\limits_{\eta \to 0} \int_{\eta}^1 \frac{dx}{x}=\lim\limits_{\eta\to 0} \ln x \bigg|_{\eta}^1 = +\infty.$$

Интеграл $\int_{0}^1\frac{dx}{x}$ расходится.

[свернуть]

Пример 2

Вычислить интеграл $\int_{-1}^1\frac{dx}{\sqrt{1-x^2}}.$
\underline {Решение:}

Для данного интеграла особыми точками являются точки $-1$ и $1$. $$\int_{-1}^1\frac{dx}{\sqrt{1-x^2}}=\int_{-1}^0\frac{dx}{\sqrt{1-x^2}}+\int_{0}^1\frac{dx}{\sqrt{1-x^2}}=\frac{\pi}{2}+\frac{\pi}{2}={\pi}$$ (неопределенный интеграл для данной функции равен: $\int {\frac{dx}{\sqrt{1-x^2}}} = {\mathrm {arcsin}}\,x$.

Таким образом, интеграл $\int_{-1}^1\frac{dx}{\sqrt{1-x^2}}$ сходится и равен $\pi$.

[свернуть]

Несобственные интегралы от неограниченных функций

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме.

Литература

  1. Коляда В.И.,Кореновский А.А. Курс лекций по математическому анализу / В.И.Коляда.-Одесса: Изд-во «Астропринт», 2010. ч.2. -С.106-108.
  2. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления / Г.М.Фихтенгольц.-Москва: Изд-во «Наука», 1964. т.2. -С.579.
  3. Кудрявцев Л.Д. Краткий курс математического анализа / Л.Д.Кудрявцев. -Москва: изд-во «Наука», 1989. -С.397.
  4. Лысенко З.М. Конспект лекций по математическому анализу.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *