М1654. Задача о медиане и биссектрисе неравнобедренного треугольника

Задача из журнала «Квант» (1998 год, 5 выпуск)

Условие

Через основание $L$ и $M$ биссектрисы $BL$ и медианы $BM$ неравнобедренного треугольника $ABC$ провели прямые параллельно, соответственно, сторонам $BC$ и $BA$ до пересечения с прямыми $BM$ и $BL$ в точка $D$ и $E$. Докажите, что угол $BED$ прямой.

Рис. 1

Первое решение

Обозначим $O=LD \cap ME$, и пусть точка $O$ лежит внутри треугольника $ABC$ (именно такое расположение было предложено рассмотреть на олимпиаде). $ME$ — медиана треугольника $MBC$ (Рис.1), а значит, и треугольника $MDL$, т.е. $OL=OD$. Далее $\angle DLB = \angle LBC,\; \angle MEL = \angle ABL = \angle LBC$. Получили: $\angle MEL = \angle DLB, \; OL= OE$.

Итак, в треугольнике $LED$ медиана $EO$ равна половине стороны $LD$. Следовательно, угол $DEL$ прямой, откуда сразу следует утверждение задачи.

Случай внешнего расположения точки $O$ рассматривается аналогично. А можно и не рассматривать этот случай, а просто сослаться на такое почти очевидное предложение.

Рис. 2

Лемма. Пусть $B$ и $C$ — произвольные точки на выходящих из $A$ лучах (Рис.2), $BD \parallel CK, \; CE \parallel BF$. Тогда и $ED \parallel KF$.

Следует из теоремы Фалеса; легко получить его с помощью векторов.

С помощью векторов нетрудно получить и естественное решение исходной задачи.

Второе решение

Рис. 3

Ниже мы будем рассматривать векторы в базисе $\{\vec{a} , \; \vec{c} \}, \;$ где $\vec{a} = \vec{BC},\; \vec{c} = \vec{BA}, \;$ длины этих векторов обозначим через $a$ и $c$ соответственно.

Имеем: $\displaystyle \vec{BL}=\vec{c} + \frac{c}{a+c} \Big( \vec{a} — \vec{c} \Big) = \frac{1}{a+c}\Big(a \vec{c} + c \vec{a} \Big)$.

Обозначим $\vec{BE} = \alpha \vec{BL}$, тогда $$ \alpha \vec{BL} + \vec{EM} = \vec{BM} =\frac{1}{2} \Big( \vec{a} + \vec{c} \Big).$$ Приравняем проекции левой и правой частей этого равенства на вектор $\displaystyle \vec{a}: \frac{\alpha c}{a+c} = \frac{1}{2}$, откуда $\displaystyle \alpha = \frac{a+c}{2c}$.

Аналогично, положив $\vec{BD} = \beta \vec{BM}$, получим $\beta \vec{BM}+\vec{DL}=\vec{BL}$; проектируя обе части этого равенства на $\vec{c}$, находим $\displaystyle \frac{\beta}{2}=\frac{a}{a+c}$.

Получили $\displaystyle \vec{BE} = \frac{\vec{a}}{2} + \frac{a}{2c} \vec{c},\; \vec{BD} = \frac{a}{a+c} \Big(\vec{a} + \vec{c} \Big)$. Таким образом, $\displaystyle\frac{\vec{BE}}{a} = \frac{1}{2}\left( \frac{\vec{a}}{a} + \frac{\vec{c}}{c}\right)$ — это высота треугольника, построенного на единичных векторах $\displaystyle \frac{\vec{a}}{a}$ и $\displaystyle \frac{\vec{c}}{c}$. Далее, $\displaystyle \frac{\vec{BE}}{a} = \frac{1}{a+c}\left(a \cdot \frac{\vec{a}}{a}+c \cdot \frac{\vec{c}}{c}\right)$ — (внутренняя) точка основания этого треугольника, отличная от основания высоты. Поэтому очевидно(Рис.3), что $\displaystyle \frac{\vec{BD}}{a}-\frac{\vec{BE}}{a}\bot\vec{BE}$ — и утверждение задачи доказано.

Разумеется, к этому решению можно было подойти более формально: вектор $\displaystyle \vec{BD}-\vec{BE}=\frac{a \left( a-c \right)}{2 \left( a+c \right)} \left(\frac{\vec{a}}{a}-\frac{\vec{c}}{c}\right) $ параллелен основанию треугольника. А можно было и воспользоваться понятием скалярного произведения векторов: $$\displaystyle \left( \vec{BD}, \vec{BE} \right) = \frac{a^2}{2} \left( 1+\frac{\Big( \vec{a}, \vec{c} \Big)}{ac} \right), $$ $$\displaystyle \left( \vec{BE}, \vec{BE} \right) = \frac{a^2}{2} \left( 1+\frac{\Big( \vec{a}, \vec{c} \Big)}{ac} \right).$$

А. Акопян, В. Сендеров

М1654. Задача о медиане и биссектрисе неравнобедренного треугольника: 1 комментарий

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *